DEX-1 and DYF-7 Establish Sensory Dendrite Length by Anchoring Dendritic Tips during Cell Migration

Maxwell G. Heiman1 and Shai Shaham1,*

1The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
*Correspondence: shaham@rockefeller.edu
DOI 10.1016/j.cell.2009.01.057

SUMMARY

Cells are devices whose structures delimit function. For example, in the nervous system, neuronal and glial shapes dictate paths of information flow. To understand how cells acquire their shapes, we examined the formation of a sense organ in C. elegans. Using time-lapse imaging, we found that sensory dendrites form by stationary anchoring of dendritic tips during cell-body migration. A genetic screen identified DEX-1 and DYF-7, extracellular proteins required for dendritic tip anchoring, which act cooperatively at the time and place of anchoring. DEX-1 and DYF-7 contain, respectively, zonadhesin and zona pellucida domains, and DYF-7 self-associates into multimers important for anchoring. Thus, unlike other dendrites, amphid dendritic tips are positioned by DEX-1 and DYF-7 without the need for long-range guidance cues. In sequence and function, DEX-1 and DYF-7 resemble tectorins, which anchor stereocilia in the inner ear, suggesting that a sensory dendrite anchor may have evolved into part of a mechanosensor.

INTRODUCTION

Some of the most remarkable architecture on the planet is found at the level of single cells. Neurons, in particular, adopt precisely patterned shapes that extend over millimeters (or, in some organisms, meters), and they elaborate complex dendrites with stereotyped lengths and branching patterns that occupy defined volumes of space (Parrish et al., 2007). The fidelity with which each neuron assumes and maintains its shape directly affects its function, with miswiring leading to a range of neurological disorders (Yaron and Zheng, 2007). The shapes of neurons are matched in complexity only, perhaps, by the shapes of the glia that surround them. Moreover, the shapes of neurons and glia must be closely coordinated for a functional nervous system to assemble. And, while the problem of generating cell shape takes on particularly astounding dimensions in the nervous system, the same problem—and, possibly, the same solutions—affect every tissue of the body.

The nematode C. elegans provides a useful model in which to study cell shape. Most of the 959 somatic cells of an adult hermaphrodite exhibit an essentially invariant shape from animal to animal (Sulston et al., 1983). Each of these cell shapes, including the complete wiring diagram of the nervous system, has been cataloged by three-dimensional reconstruction of electron micrographic serial sections (Ward et al., 1975; White et al., 1976, 1986). As most cells acquire their shapes in a defined time window from about 300–420 min post-fertilization, morphogenesis occurs on a timescale compatible with time-lapse imaging, a technique made even more powerful by the optical transparency of C. elegans. Finally, the facile genetics of this organism make it straightforward to isolate mutants affecting cell shape and thereby identify the relevant genes.

To examine how cell shape is determined in neurons and glia, we decided to use developmental imaging and genetics to study development of the amphids, a bilaterally symmetric pair of sense organs in the head of the animal. Each amphid consists of 12 neurons that exhibit specific responses to smells (AWA, AWB, and AWC neurons), temperature (AFD neuron), and taste, touch, osmotic conditions, and pheromones (ASE, ADF, ASG, ASH, ASI, ASJ, ASK, and ADL neurons) (Bargmann, 2006; Ward et al., 1975). Despite their diverse sensory functions, these 12 neurons share a similar overall shape, each extending an axon laterally into the nerve ring, or “brain,” and a single dendrite reaching to the tip of the nose. The axons do not arborize but are unbranched or bifurcated and make synapses en passant. The dendrites are also unbranched, each terminating at the nose in a sensory cilium bearing receptors responsible for that neuron’s specific sensory modalities (Bargmann, 2006). The 12 dendrites associate with two glia: the sheath glial cell, which extends a process to the nose where it ensheathes all 12 dendritic endings; and the socket glial cell, which extends a process to the nose where it forms a pore through which some neurons are directly exposed to the environment (Shaham, 2006; Ward et al., 1975). This sense organ, therefore, is shaped essentially as a linear bundle (Figure 1A), allowing a single aspect of neuronal and glial shape to be analyzed without the added complications of dendritic field tiling or branching, features that have been carefully explored elsewhere (Gao, 2007). Thus, the amphid offers a simple system for asking a basic question about cell shape, namely, how is the length of a sensory dendrite, or a glial cell, established.
RESULTS

DEX-1 and DYF-7 Are Required for Dendrite and Glial Process Extension

To identify factors that determine the shapes of neurons and glia, we generated a strain expressing fluorescent proteins in two amphid neurons (ASE and AWC) and the sheath glial cell, performed random chemical mutagenesis, and screened visually for animals with morphologically abnormal neurons and glia. We also screened a panel of candidate mutants known to affect sensory neuron function (Starich et al., 1995). We identified a novel class of mutants in which all 12 dendrites and the sheath glial process...
fail to extend to the tip of the nose, a phenotype we call Dex (Dendrite extension defective) (Figures 1A–1C). The mutations define two genes, dex-1 and dyf-7 (see Experimental Procedures).

The Dex phenotype is specific to the lengths of the dendrites and sheath glial process. Neuronal and glial cell bodies are properly positioned and appear healthy; both cell types express appropriate cell-specific markers, including a marker whose expression depends on normal axon-axon contacts; and overall axon morphology appears normal (Figures 1A–1C, Figure S1 online). Dendrites are ensheathed by the sheath glial cell and possess sensory cilia to which odorant receptors properly localize (Figure S1). The socket glial cell extends a grossly ectopic posterior process that contacts the shortened sheath glial cell (Figures 1B and 1C), suggesting that all relevant cell-cell contacts in the organ—namely, between the sheath glial cell and each neuron, between the sheath and socket glia, and between the socket glial cell and hypodermal cells at the nose (Perkins et al., 1986; Ward et al., 1975)—remain intact. The specificity of the Dex phenotype to dendrite length indicates that dendrite and axon extension occur by different mechanisms, and that cell-cell contacts are probably not sufficient to confer normal cell shape.

Two additional features of the Dex phenotype struck us as potentially revealing. First, weakly penetrant alleles of dex-1 and dyf-7 produce bimodally distributed dendrite lengths, an effect seen most conspicuously in dyf-7(ns116) but also evident in dex-1(ns42), dyf-7(ns117), and, to a lesser extent, dyf-7(ns88) (Figure 1D). These bimodal distributions suggest that dendrite growth in dex-1 and dyf-7 animals is limited by an initiation event that often fails, while downstream steps usually proceed to completion if the initiation event is successful.

Second, when dex-1 or dyf-7 larvae are born with short dendrites, those dendrites remain at constant length until adulthood, unlike wild-type dendrites, which scale almost 2-fold in length to keep pace with overall larval growth (Figures 1E and S1D). However, dex-1 and dyf-7 neurons are not generally insensitive to larval growth, as their cell body size and axon length increase at rates similar to those in wild-type neurons (Figures S1C and S1D). Thus, dex-1 and dyf-7 mutations cause defects at two steps: first, in establishing proper dendrite length during embryonic development, and second, in scaling dendrite length to keep pace with larval growth.

Dendrites Extend as a Coordinated Bundle

Animals bearing the partially penetrant alleles dex-1(ns42) and dyf-7(ns117) display dendrites and glial processes of variable lengths in a population, which allowed us to determine if each neuron and glial cell attains its length autonomously or if lengths are coordinated within an amphid bundle. If each cell attains its length autonomously, then neurons in the same bundle would be of similar lengths no more often than one would expect based on the overall distribution of lengths in the population. However, a correlation between dendrite lengths would indicate coordination within each amphid bundle, suggesting a non-cell-autonomous mechanism of growth.

To distinguish between these possibilities, we generated a strain in which a single neuron, AWC, expresses green fluorescent protein (GFP) stochastically in either the left or right amphid (Troemel et al., 1999) and another neuron, ADF, expresses red fluorescent protein (RFP) in both amphids (Figure 2A). We then compared the length of the AWC dendrite to the lengths of ipsilateral (Figure 2A, closed arrowheads) and contralateral (Figure 2A, open arrowheads) ADF dendrites in dex-1(ns42) and dyf-7(ns117) animals.

In each mutant, dendrite lengths in the same amphid were perfectly correlated (Figure 2B), while dendrite lengths in bilaterally apposed amphids were no more correlated than would be expected at random (Figure 2C). Dendrite lengths were similarly well-correlated with the length of the sheath glial process (data not shown). Thus, at least two separable activities are involved in dendrite length establishment: a genetically uncharacterized activity that coordinates the relative lengths of dendrites and glia, and a dex-1- and dyf-7-dependent activity that sets the absolute length of the dendritic-glial bundle.

Dendrites Form by Dendritic Tip Anchoring during Cell Body Migration

We considered two hypotheses for how dendrite length might be established. In one hypothesis, a dendritic growth cone emerges from the cell body and seeks a target at the nose. This mode of neurite outgrowth is well established for axon formation, and a similar mode of outgrowth has been observed using in vivo time-lapse imaging of highly branched dendrites forming in other systems (Williams and Truman, 2004; Wu and Cline, 2003). In an alternative hypothesis, the presumptive dendritic tip remains stationary while the cell body migrates away, a mode of outgrowth we call retrograde extension. Retrograde extension has not been directly observed in any system but has been suggested by electron microscopic studies of developing sense organs in C. elegans embryos and male tails (Nguyen et al., 1999; Sulston et al., 1983). Time-lapse images of wild-type and dyf-7(m537) embryos expressing myristoylated GFP in most sensory neurons were consistent with retrograde extension (Movie S1), but due to the large number of cells labeled it was impossible to resolve individual dendrites. To overcome this limitation, we used optical cell marking (OCM) to observe the formation of single dendrites in living C. elegans embryos.

OCM entails cell-limited photoconversion of a broadly expressed fluorescent protein—in this case, Kaede—to generate a marker with nearly exclusive single-cell specificity (Figures 3A–3C) (Ando et al., 2002). Using OCM we saw that in 4/4 wild-type embryos (Movies S2–S5), amphid neurons were born near the presumptive nose and formed a projection toward it (Figure 3D). The cell body then developed a leading edge antipodal to this projection and underwent an ~30 min, ~6 μm posterior migration while the dendritic tip remained anchored at its original position (Figure 3E), forming a dendrite by retrograde extension (Figure 3F).

We did not attempt single-embryo analysis of dex-1 embryos because of the weak penetrance of the ns42 allele. However, in 4/4 dyf-7(m537) embryos (Movies S6–S9), neurons were born in the proper position and formed projections toward the nose (Figure 3H), but dendritic tips failed to remain anchored during cell body migration, were “dragged” along with the migrating cell body (Figure 3I), and eventually disappeared (Figure 3J). Thus, dyf-7 is required for anchoring dendritic tips during cell body migration.
We attempted to quantify the rate of movement of the dendritic tip, nucleus, and leading edge of each migrating cell by measuring their positions along the vertical image axis (y) at each time point (t) (see Supplemental Experimental Procedures). We aligned the movies in space and time using the endpoint of nuclear migration, defined by the abatement of nuclear velocity, as a registration mark ((y, t) = (0, 0); Figure S2). Averaged trajectories of wild-type embryos from Movies S2–S4 (Figure 3G) and dyf-7 embryos from Movies S6–S9 (Figure 3K) showed that cell body migrations were virtually identical. However, in dyf-7 embryos the dendritic tip did not remain stationary but followed the migrating cell body with similar velocity, demonstrating that dyf-7 specifically affects dendritic tip anchoring but not cell body migration.

Figure 2. Amphid Sensory Dendrite Extension Is Coordinated

(A) To compare lengths of ipsilateral and contralateral dendrites, animals bearing dex-1(ns42) or dyf-7(ns117) were made to express str-2pro:GFP (AWCL or AWCR neuron, green) and snr-142pro:RFP (ADF and ADFR neurons, red). Closed green arrowhead, AWC dendritic tip; closed red arrowhead, ipsilateral ADF dendritic tip; open red arrowhead, contralateral ADF dendritic tip.

(B and C) Animals were collected as L4s and dendrite and nose lengths measured. AWC dendrite length was compared to the ipsilateral (B, closed circles) and contralateral (C, open circles) ADF dendrite lengths. Each dot represents an individual. dex-1(ns42), red symbols; dyf-7(ns117), blue symbols. Clustering of data points at corners reflects the bimodal distribution described in Figure 1D.
dex-1 and dyf-7 Encode a Tectorin-like Protein Pair

We used standard mapping and cloning techniques to identify the *dex-1* and *dyf-7* genes (see Experimental Procedures). We found that *dyf-7* encodes a predicted single-pass transmembrane protein with a small cytoplasmic domain and a large extracellular/lumenal domain similar to zona pellucida (ZP) proteins, best known for comprising the matrix surrounding vertebrate oocytes to which sperm bind (Figure 4A) (Jovine et al., 2005). We mapped *dex-1* to a 0.4 cM interval that included a gene predicted to encode a single-pass transmembrane protein with a domain similar to zonadhesin (Figure 4A), a sperm protein that binds the ZP matrix (Hardy and Garbers, 1995), and thus a candidate DYF-7 interactor. Sequence analysis and genetic rescue showed that this gene is *dex-1* (see Experimental Procedures). In addition to its zonadhesin-like domain, DEX-1 is predicted to include two domains similar to nidogens, a family of proteins found in basement membranes, including neuronal basement membrane in *C. elegans* (Kim and Wadsworth, 2000).

The sole *dex-1* mutation is predicted to truncate its zonadhesin domain (Figure 4A). The most penetrant alleles of *dyf-7* are predicted to prematurely terminate its coding sequence (*ns119, m537*), interfere with its transmembrane segment (*ns118*), or change a hydrophobic residue to a charged residue between the first and second conserved cysteines of the ZP domain (*ns120*). Less penetrant alleles correspond to other point mutations in the ZP domain (*ns117, ns116, ns88*) (Figures 1D and 4A).

In addition to their similarity to proteins involved in sperm-egg binding, DEX-1 and DYF-7 also share domain composition with α- and β-tectorin (Figure 4A), two vertebrate inner ear proteins found in a matrix (the tectorial membrane) that anchors the sensory endings of hair cells and is required for hearing (Legan et al., 1997; Petit et al., 2001). Mutations in α-tectorin are linked to instances of familial deafness and one such mutation,
α-tectorin(G1824D) (Verhoeven et al., 1998), corresponds well to DYF-7(V52E), despite the low overall sequence similarity between their ZP domains (Figure S3).

We reasoned that if DEX-1 and DYF-7 constitute a tectorin-like matrix, then mutations in each protein might interact genetically. Indeed, the weakly penetrant, cold-sensitive alleles dex-1(ns42) and dyf-7(ns117) strongly synergize, such that the residual dendrite-anchoring activity of DYF-7(P107S) depends almost entirely on the presence of wild-type DEX-1 (Figure 4B, 25°C), cultivation under restrictive conditions revealed an even stronger synergy, in the form of a synthetic lethal phenotype (Figure 4B, C). Cultivation under restrictive conditions revealed an even stronger synergy, in the form of a synthetic lethal phenotype (Figure 4B, C), or restrictive (15°C) temperatures and dendrite lengths scored. dex-1(ns42); dyf-7(ns117) animals were scored with (+) and without (−) a dyf-7pro:DEX-1-DYF-7 fusion transgene. In each case, n ≥ 100. For transgene experiments, three lines were scored. Error bars, standard error of the mean (SEM) except, in transgene experiments, SD among lines.

To determine when and where dex-1 and dyf-7 are expressed, we generated myristoylated fluorescent reporter transgenes using dex-1 or dyf-7 promoter sequences that are sufficient for rescue when used to express the corresponding cDNAs. These promoters drive reporter expression in embryos at the time of dendrite formation, with dyf-7pro expressed in most sensory neurons, including all amphid sensory neurons, and dex-1pro expressed in many non-neuronal adjacent cells, including hypodermal cells, seen as a row lateral to the amphid neuron bundle and, in a separate group, surrounding the sensory depression at the subcellular localization of DEX-1 and DYF-7. DEX-1-mCherry accumulates in bright puncta at dendritic tips during retrograde transport (Figure 5D). DYF-7-GFP localizes in spots and patches restricted to the head and tail, with weaker staining at the plasma membrane of the dendrite and cell body (Figure 5E, Movie S11). Colocalization of DEX-1-mCherry and DYF-7-GFP at dendritic tips was occasionally observed (Figure S5C). To further characterize DYF-7

DEX-1 and DYF-7 Act at the Time and Place of Dendrite Anchoring

To determine when dex-1 and dyf-7 act, we performed reciprocal temperature shifts of the cold-sensitive mutants at various developmental stages and scored dendrite lengths in adults. Shifting animals to the permissive temperature before, but not after, the time of dendrite formation was sufficient to promote dendrite extension (Figures 5A and 5B, open circles). Conversely, shifting animals to the nonpermissive temperature before, but not after, the time of dendrite formation inhibited dendrite extension (Figures 5A and 5B, closed circles). Similarly, expression of dyf-7 cDNA, under control of a heat-shock-inducible promoter, before the time of dendrite formation was necessary and sufficient for rescue of a completely penetrant dyf-7 mutation (Figure S5A). Thus, dex-1 and dyf-7 activities are necessary and sufficient at the time of dendrite extension.

To determine when and where dex-1 and dyf-7 are expressed, we generated myristoylated fluorescent reporter transgenes using dex-1 or dyf-7 promoter sequences that are sufficient for rescue when used to express the corresponding cDNAs. These promoters drive reporter expression in embryos at the time of dendrite formation, with dyf-7pro expressed in most sensory neurons, including all amphid sensory neurons, and dex-1pro expressed in many non-neuronal adjacent cells, including hypodermal cells, seen as a row lateral to the amphid neuron bundle and, in a separate group, surrounding the sensory depression at the anterior pole of the embryo (Figure 5C). The promoters also drive expression in the excretory cell, consistent with the lethality observed in the double mutant (Figure 5C). The activity of each promoter was first apparent in bean-stage embryos, peaked in late embryogenesis, diminished in L1 larvae, and was negligible in older larvae and adults (Movie S10, Figure S5B).

We next used rescuing fluorescent fusion proteins to determine the subcellular localization of DEX-1 and DYF-7. DEX-1-mCherry localizes in spots and patches restricted to the head and tail, where sensory organs are forming (Figure 5D). DYF-7-GFP accumulates in bright puncta at dendritic tips during retrograde extension, with weaker staining at the plasma membrane of the dendrite and cell body (Figure 5E, Movie S11). Colocalization of DEX-1-mCherry and DYF-7-GFP at dendritic tips was occasionally observed (Figure S5C). To further characterize DYF-7

Figure 4. dex-1 and dyf-7 Encode Transmembrane Proteins and Interact Genetically

(A) Schematic diagram of DEX-1, DYF-7, α-tectorin, and β-tectorin. Nidogen (nido), zonadhesin-like (zonad), and zona pellucida (ZP) domains; consensus furin cleavage sites (CFCS, gold bars); signal sequences (gray bars); and transmembrane segments/GPI anchors (dark blue bars) are indicated.

(B) Animals expressing gcy-5pro:GFP and str-2pro:GFP to mark individual dendrites and bearing the cold-sensitive mutations dex-1(ns42), dyf-7(ns117), or both were cultivated at permissive (25°C), standard (20°C), or restrictive (15°C) temperatures and dendrite lengths scored. dex-1(ns42); dyf-7(ns117) animals were scored with (+) and without (−) a dyf-7pro:DEX-1-DYF-7 fusion transgene. In each case, n ≥ 100. For transgene experiments, three lines were scored. Error bars, standard error of the mean (SEM) except, in transgene experiments, SD among lines.
localization, we forced expression of DYF-7-GFP in a single amphid neuron post-embryonically, when it is not normally expressed, to take advantage of the greater spatial resolution afforded by a mature neuron. In this system, DYF-7-GFP localizes in a novel domain at the dendritic tip, adjacent to the sensory cilium, indicating it contains a signal targeting it to the dendritic tip (Figure 5F). The timing, expression, and localization of DEX-1 and DYF-7 position them to play a direct role in dendritic tip anchoring.

DEX-1 and DYF-7 Are Secreted

We imagined two models for dendrite anchoring. First, DEX-1 on neighboring cells could bind to DYF-7 at the dendritic tip, thus adhering the dendritic tip to cells at the nose. Alternatively, DEX-1 and DYF-7 could be proteolytically released from the cell surface and assembled into a local extracellular matrix to which the dendritic tip binds via a yet-unidentified receptor. Indeed, α- and β-tectorin are released from their membrane anchors by a furin-family protease and, together with collagens, assemble a matrix to which ciliated hair cells bind via an unidentified receptor (Legan et al., 1997; Petit et al., 2001). We reasoned that if DEX-1 and DYF-7 are similarly released, their activities might be independent of the cell type in which they are expressed, a prediction not compatible with the cell adhesion model.

We found that a dex-1 mutant was rescued by dex-1 cDNA expressed using its endogenous promoter, the dyf-7 promoter, or a glial enhancer element from the lin-26 gene (Figure 6A) (Landmann et al., 2004), but not when using thepha-4 promoter expressed at the same developmental stage in foregut and midgut cells, anatomically separated from the amphid (Figure 6A) (Mango et al., 1994). Mosaic analysis also indicated that dex-1 could act from multiple lineages (see Supplemental Experimental Procedures).

To further examine proteolysis and secretion of DEX-1, we expressed an epitope-tagged construct in Drosophila S2 cells in vitro, a system that allows rapid production of large quantities of protein at a temperature compatible with C. elegans protein function. We observed no proteolytic cleavage or secretion of
DEX-1 in this system (Figure 6B), suggesting that secretion in vivo would require a protease absent in S2 cells. DEX-1 lacks an optimal consensus furin cleavage site (CFCS) and α-tectorin
and zonadhesin undergo proteolytic cleavages at non-CFCS sequences, suggesting the existence of a conserved protease that cleaves within zonadhesin domains (Bi et al., 2003; Legan et al., 1997). Consistent with this idea, a derivative of DEX-1 lacking its transmembrane anchor (DEX-1 DTM; Figure 4A) was efficiently secreted in vitro (Figure 6B) and was competent for rescue when expressed using the
dex-1 or glial promoters, although not the dyf-7 promoter (Figure 6A). These results demonstrate that DEX-1 is capable of acting as a secreted factor.

Similarly, the dyf-7 cDNA was competent for rescue whether expressed in neurons, dex-1-expressing cells, or glia, but not in gut (Figure 6C), and mosaic analysis indicated sufficiency in multiple amphid sensory neuron lineages (see Supplemental Experimental Procedures). In S2 cells in vitro, DYF-7 is proteolyzed into a ∼45 kDa N-terminal fragment, 50% of which is secreted into medium, and a ∼15 kDa C-terminal fragment, 100% of which is retained by cells (Figure 6D), consistent with proteolytic cleavage at any of three CFCS sequences between the ZP domain and transmembrane segment (Figure 4A). Deletion of the CFCS-bearing sequence (DYF-7 ΔCFCS; Figure 4A) abolished almost all proteolytic cleavage and resulted in a single ∼50 kDa product, 100% of which was retained by cells (Figure 6D). Despite its inability to undergo proteolytic cleavage, DYF-7 ΔCFCS was competent to anchor dendrites in vivo when expressed using its endogenous, neuron-specific promoter but not when expressed in other cell types, suggesting that the ability of DYF-7 to act from multiple cell types depends on its proteolytic release from cell surfaces into the extracellular environment adjacent to neurons (Figure 6C).

DYF-7 Self-Associates into Multimers Important for Dendritic Tip Anchoring

ZP domains are disulfide-dependent polymerization modules thought to underlie the matrix-forming activity of proteins like tectorins (Jovine et al., 2006; Monne et al., 2008). To determine

Figure 6. Secretion of DEX-1 and DYF-7

(A) Animals expressing gcy-5 pro:GFP and str-2 pro:GFP and bearing dex-1 (ns42) and transgenes with the indicated promoters (gut,pha-4 pro; dex-1 pro; dyf-7 pro; glia, lin-26 E1 enhancer:myo-2 minimal promoter) driving dex-1 or dex-1 ΔTM cDNA were cultured at 20°C and dendrite lengths scored. The enhanced defect in dyf-7 pro: DEX-1 ΔTM may reflect premature nonproductive interaction of DEX-1 ΔTM and DYF-7 in the secretory pathway. Each bar is the mean of three transgenic lines, n = 100 per line; error bars, SD among lines. (B) S2 insect cells were transfected, or not (−), with FLAG-DEX-1-myc or FLAG-DEX-1 ΔTM-myc and cultured at 25°C for 2 days. Equivalent samples of cell lysate (L) and medium (M) were collected and analyzed by immunoblot. Left, anti-FLAG; right, anti-myc. Due to increased reactivity of DEX-1 ΔTM C-terminal myc, these samples were diluted 1:20. *, nonspecific degradation. (C) Same as (A) except animals express only gcy-5 pro:GFP and bear dyf-7 (m537) and transgenes with the indicated promoters driving DYF-7 or DYF-7 ΔCFCS. (D) Same as (B) except cells were transfected with HA-DYF-7-FLAG or HA-DYF-7 ΔCFCS-FLAG. Left, anti-HA; right, anti-FLAG. *, nonspecific degradation. (E) S2 cells were transfected, or not (−), with HA-DYF-7 ΔCFCS-FLAG (WT) or the same construct bearing the V52E mutation (V52E). Cell lysates were collected under nonreducing (no β-mercaptoethanol [β-me], 50°C) or reducing (5% β-me, boiling) conditions and analyzed by anti-HA immunoblot. Multimers are indicated. (F) S2 cells were transfected, or not (−), with HA-DYF-7 ΔCFCS-FLAG alone or in conjunction with DYF-7 ΔCFCS-myc. Lysates were collected under nonreducing conditions, immunoprecipitated using anti-myc antibody-conjugated agarose, and dilution-normalized volumes of starting material (input, IN), unbound (UB), and immunoprecipitated (IP) fractions were analyzed by anti-HA immunoblot.
whether DYF-7 might similarly multimerize to form a matrix, we examined its behavior under nonreducing conditions. DYF-7ΔCFCS extracted from S2 cells displayed a "multimer of dimers" profile similar to that described for other ZP proteins (Figure 6E) (Jovine et al., 2006). Less abundant species corresponding to trimers, pentamers, and heptamers were also present (Figure 6E). No multimerization of wild-type DYF-7 secreted into medium was observed (data not shown), possibly because high local concentrations of the ZP domain are required for multimerization, as has been shown in other systems (Jovine et al., 2006).

To determine whether these high-molecular-weight complexes reflect self-association, we coexpressed DYF-7ΔCFCS constructs bearing HA-FLAG and myc epitope tags, performed anti-myc immunoprecipitation, and probed for the HA-FLAG-tagged protein in the unbound and immunoprecipitated fractions. As expected, about half of the dimer-associated HA-DYF-7ΔCFCS-FLAG coprecipitated with DYF-7ΔCFCS-myc, with the remaining half presumably representing HA-DYF-7ΔCFCS-FLAG homodimers (Figure 6F). Recovery was more efficient with higher-order oligomers, and no immunoprecipitation was seen in the absence of DYF-7ΔCFCS-myc (Figure 6F).

We wondered whether any of the DYF-7 point mutations we isolated due to their effect on dendrite anchoring might act by disrupting multimerization. We found that, when introduced into the ΔCFCS construct, the DYF-7(V52E) point mutant dimerized, and thus presumably was at least partly folded, yet it failed to multimerize normally (Figure 6E). Using a semiquantitative fluorescence-based detection system, we found that the relative abundance of the DYF-7(V52E) monomer, dimer, and trimer are increased while the tetramer and higher forms are severely diminished, an effect not observed with the chemically similar point mutant DYF-7(V191D) (Figure 6E). This result suggests that V52 may lie near the ZP multimerization interface, that this interface is structurally distinct from the dimerization interface, and, most importantly, that the ability of DYF-7 to anchor dendritic tips is associated with multimerization and, by extension, matrix formation. By analogy, patients with the α-tectorin(G1824D) mutation may fail to multimerize α-tectorin.

DISCUSSION

Molecular Mechanism of Sensory Dendrite Extension

Our studies suggest the following model: Sensory neurons are born near the presumptive nose, polarize toward it, and express DYF-7. DYF-7 is trafficked toward this polarization; is released from the membrane, likely by a furin-family protease; and self-associates into dimers that further self-associate into higher-order multimers. Meanwhile, neighboring cells express transmembrane DEX-1, which likely undergoes processing by a non-furin protease and is released into the extracellular space. Then, acting together in the extracellular space, DEX-1 and DYF-7 anchor dendritic tips, possibly by co-assembling into a tectorial membrane-like matrix. At this point, the neuron cell body migrates posteriorly, probably guided by the repulsive cue SLT-1/Slit, which is highly expressed at the nose (Hao et al., 2001), and its receptor SAX-3/Robo, which is required for normal amphid cell body migration (Zallen et al., 1999). With the dendritic tip anchored at the nose, the dendrite stretches to span whatever distance the cell body may move, thus providing a simple yet robust system for attaining proper dendrite length and dendritic tip position.

There are at least two types of models for how DEX-1 and DYF-7 could generate an anchoring force. First, the DEX-1 nidogen domains could bind immobile basement membrane components while the DEX-1 zonadhesin domain could bind the DYF-7 ZP domain, which in turn could interact with the dendritic tip. Although a single such cable might be incapable of resisting the pull of cell migration, the multimerization of DYF-7 would allow the formation of myriad parallel cables, like Velcro fibers, over which the force could be distributed. Alternatively, DEX-1 and DYF-7 could co-assemble a large free-standing matrix attached to the dendritic tip, which by steric hindrance alone could act like a fluke anchor, restraining the dendritic tip from moving through the densely packed environment at the nose tip. A key to distinguishing these models will be defining what physical interaction exists between DEX-1 and DYF-7, an important challenge as the physical interactions that bind the tectorins together, or that underlie zonadhesin-ZP sperm-egg interactions, have been difficult to ascertain.

Finally, it is critical to identify the receptor that connects DEX-1 and DYF-7 to dendritic tips. Its identity may provide insight into the functionally equivalent but so far elusive molecules in the hearing system that connect hair cell stereocilia to the tectorial membrane.

Retrograde Extension Is a Novel Mode of Dendrite Growth

In general, neurite development occurs in two phases: a “wiring” phase, during which connections are established, and a “scaling” phase, during which those connections are maintained in the face of mechanical distortion caused by organismal movement and growth. Wiring often occurs by anterograde extension (Figure 7A), in which an axonal or dendritic projection emerges...
from a stationary cell body and is guided by extracellular cues toward its destination (Huber et al., 2003). These cues can be built into the cellular landscape or, in a phenomenon called axon tow- ing, can be produced by migrating cells that escort the axon to its destination (Gilmour et al., 2004). A different mode of wiring occurs in cerebellar granule cell development, during which the neuron extends a pair of processes parallel to the surface of the external granule layer of the cerebellum before extending a third process in the radial direction (Figure 7B) (Solecki et al., 2006). The cell soma then translocates along the radial process, reversing its polarity (Solecki et al., 2004). Here, we describe a third mode of wiring, retrograde extension, in which the tip of a neurite is generated de novo by cell body migration (Figure 7C). Unlike cerebellar granule cell development, in which neurite formation precedes and is independent of cell soma translocation (Kerjan et al., 2005; Renaud et al., 2008), during retrograde extension it is the movement of the cell body itself that generates the neurite.

Mechanisms of neurite scaling are less well understood, although extracellular matrix proteins seem to play a key role. In C. elegans, the extracellular matrix protein DIG-1 is required to maintain axon positioning during mechanical distortion caused by organismal movement: in dig-1 mutants, axons are misplaced, but the defect is suppressed in animals unable to move (Benard et al., 2006). In Drosophila mutants lacking the ZP-domain protein NompA, sensory dendrites attach normally to mechanosensitive bristles during embryogenesis but become detached before adulthood. Although not known, detachment may be due to a scaling defect (Chung et al., 2001). Glial morphogenesis also depends critically on scaling; for example, radial glia contact both the ventricular zone (VZ) and pial surface when the cortex consists only of a primary neuroepithelium and then maintain these contacts during cortical expansion, ultimately increasing to >100 μm in length in the mouse (Altman and Bayer, 1990; Noctor et al., 2002). Intriguingly, these glial contacts are lost in mutants lacking the nidogen-binding domain of laminin γ1 (Halter et al., 2002; Haubst et al., 2006).

DEX-1 and DYF-7 are required for both retrograde extension and scaling. One interpretation of this result is that these phenomena may rely on a single physical mechanism—the anchoring of a dendritic tip relative to its extracellular environment—to resist the distortion caused by cell migration, in one case, and by organismal growth, in the other. As nidogen and zonadhesin proteins are expressed throughout the vertebrate nervous system, and ZP proteins are expressed in many sense organs and in the brain, a DEX-1-DYF-7-like anchoring activity may be conserved in the wiring and scaling of the vertebrate nervous system as well.

ZP Proteins and the Evolution of Sense Organs
There are 41 predicted ZP proteins in C. elegans, and 16 in humans (Finn et al., 2006). In addition to DYF-7, ZP proteins related to sense organ development include C. elegans RAM-5, required for morphogenesis of male-specific sense organs (Yu et al., 2000); Drosophila NompA, required for post-embryonic integrity of mechanosensitive sense organs (Chung et al., 2001); and, in mammals, the tectorins of the inner ear (Legan et al., 1997); olfactorin in the olfactory epithelium (Di Schiavi et al., 2005); and vomeroglandin and ebnerin, distinct products of the DMBT1 gene that are expressed in the pheromone-responsive vomeronasal organ (Matsushita et al., 2000) and in the taste-modulating secretions deposited by von Ebner’s gland onto taste buds (Li and Snyder, 1995), respectively. Thus, the association of ZP proteins with sense organs is conserved across species and across sensory modalities.

DEX-1 and DYF-7 resemble the tectorins in their overall domain structure, in being proteolytically released from membrane anchors and secreted to form extracellular matrices, and in anchoring the ciliated endings of sensory cells; however, DEX-1 and DYF-7 anchor dendritic tips to resist the force of cell migration while tectorins anchor stereocilia to resist the deflection caused by sound waves. Over two centuries ago, the theologian William Paley was fascinated by the anatomy of the ear, which he took as evidence of the hand of “the Author of nature” (Paley, 1803). However, the similarity between DEX-1-DYF-7 and the tectorins provides evidence that such a remarkable “instrument adapted to the reception of sound” as the tectorial membrane of the human ear may have evolved from an ancient module required for morphogenesis of a nematode sense organ.

EXPERIMENTAL PROCEDURES

Strains and Plasmids
Strains were constructed in the N2 background and cultured under standard conditions (Brenner, 1974; Stiernagle, 2006) unless otherwise noted. Transgenes and plasmids are listed in Tables S1 and S2.

Isolation of Mutants and Genetic Mapping
Animals of genotype nts153 IV; nts1 V; klyl136 X were mutagenized using 70 mM ethyl methanesulfonate (EMS, Sigma) at 20°C for 4 hr. Nonclonal F2 progeny were examined on an Axioplan 2 fluorescence microscope (Zeiss) with 63×/1.4 NA objective (Zeiss) and dual-band filter set (Chroma, Set 51019), and animals with aberrant amphid morphologies were recovered. In parallel, the markers were crossed to dyf-1 through dyf-13 mutants, for which amphid function was known to be defective but amphid structure had not been examined (Starich et al., 1995). dyf-7(m537) and dyf-8(m539) were identified as phenotypically Dex.

Linkage mapping and SNP analysis refined the dyf-7 map position to a 0.7 cM interval on LG X (Supplemental Experimental Procedures) that included C43C3.3, a gene previously identified as dyf-8 by Stephen Wicks (personal communication). We found that dyf-7(m537) contains a frameshift-insertion in C43C2.3 of eight imperfect 10-mer repeats (Table S3; cross-progeny of dyf-7(m537) and dyf-8(m539) are phenotypically Dex; and dyf-7(m537) is rescued by the C43C3 cosmid (96% ± 4.6% of amphids with full-length dendrites; mean of three lines, n = 100 per line, ± SD) and by a C43C3.3pro:C43C3.3 cDNA transgene (Figure 6C).

Linkage mapping and SNP analysis mapped dex-1 to a 0.4 cM interval on LG III. Based on the identity of dex-7, we scanned the dex-1 interval for candidate ZP or ZP-interacting proteins (Supplemental Experimental Procedures). Sequencing of D1044.2 from dex-1(ns42) revealed a C > T transition (Table S3), and dex-1(ns42) was rescued by the D1044 cosmid (97% ± 4.7% of amphids with full-length dendrites; mean of three lines, n = 100 per line, ± SD) by a D1044.2pro:D1044.2 cDNA transgene (Figure 6A).

Additional Dex mutants were isolated by screening nonclonal mutagenized F2 progeny using a fluorescence-equipped dissecting microscope (Leica) for the Dex phenotype; ns88 was isolated independently by Taulant Bacaj. These mutants mapped to LG X, and each bore a mutation in dyf-7 (Table S3).

Dendrite Length Measurements
AxiVision 4.4 software (Zeiss) was used to measure the distance from the anterior limit of cell body fluorescence to the anterior limit of dendrite

Cell 137, 344–355, April 17, 2009 ©2009 Elsevier Inc. 353
fluorescence and the nose tip. For temperature shifts, staged embryos were
selected based on morphology. For population measurements, a fluo-
sence-equipped dissecting microscope was used to score dendrite length.

Microscopy and Image Processing
Images were collected on a Deltavision Core imaging system (Applied Preci-
sion) with a PlanApo 60×/1.42 NA or UPLS Apo 100×/1.40 NA oil-immersion
objective and a Photometrics CoolSnap HQ camera (Roper Scientific). For
OCM, nals96 (dyf-7;pro:Kaede) embryos at late ball stage were mounted
(Supplemental Experimental Procedures) and photoconversion performed
by a series of 20 50 ms pulses of a 406 nm laser at 10% power. At 4 min inter-
vals, a stack of 12–16 optical sections at 0.4 μm spacing was acquired using
white light and fluorescence (excitation 572/35 nm, emission 630/60 nm). To
compensate for loss of signal by photobleaching, photoconversion of newly
synthesized Kaede was repeated every 12–24 min. Time-lapse images were
acquired until the embryo began to twitch at 1.5-fold stage.

Deconvolution and analysis of images were performed with Softworx
(Appplied Precision) and IVE/Priism (Chen et al., 1996). Maximum brightness
projections were obtained using contiguous optical sections; the upper and
lower limits of the region of interest were not necessarily the same among
time points or wavelengths. Figures and movies were assembled using
Photoshop 7 (Adobe Software) and QuickTime Pro (Apple Computer). Quan-
tative analysis of cell migration is detailed in Supplemental Experimental
Procedures.

Protein Expression and Analysis
Drosophila Schneider (S2) cells (Invitrogen) were cultured at 25°C and trans-
fected with FuGene HD (Roche), incubated for 2 days, and lysed in sample
buffer (60 mM Tris HCl, pH 8.0, 2% sodium dodecylsulfate [SDS], 10% glyc-
erol, 5% β-mercaptoethanol as appropriate, 0.01% bromophenol blue, 1×
Complete protease inhibitor cocktail [Roche] or IP buffer (60 mM Tris HCl,
pH 8.0, 1% Triton X-100 [Sigma], 10% glycerol, 1× Complete protease
inhibitor cocktail). Immunoprecipitation was performed with goat anti-
myc-conjugated agarose (Genetex) for 2 hr at 4°C. Samples were analyzed on
NuPage 4–12% Bis-Tris gels (Invitrogen) and immunoblotting was per-
formed using the following antibodies: DEX-1 N-terminal FLAG, rabbit poly-
clonal anti-FLAG (Sigma) 1:5000; DEX-1 C-terminal myc, rabbit polyclonal
formed using the following antibodies: DEX-1 N-terminal FLAG, rabbit poly-
clonal anti-FLAG (Sigma) 1:5000; DEX-1 C-terminal myc, rabbit polyclonal
immunoblotting was per-
formed using the following antibodies: DEX-1 N-terminal FLAG, rabbit poly-
clonal anti-FLAG (Sigma) 1:5000; DEX-1 C-terminal myc, rabbit polyclonal

SUPPLEMENTAL DATA
Supplemental Data include Supplemental Experimental Procedures, three
tables, six figures, and 11 movies and can be found with this article online at

ACKNOWLEDGMENTS
We thank Yun Lu for preparing the electron micrograph in Figure S1B; Valer
Thomson, the Rockefeller University Bio-Imaging Resource Center, and
members of Urikle Gaul’s laboratory for technical help; Cori Bargmann, Alison
North, and members of the Shaham laboratory for comments on the manu-
script; and Myriam Heiman, M.G.H. was a fellow of the Jane Coffin Childs
Memorial Fund for Medical Research, S.S. is a Klingenstein Fellow in the Neuro-
sciences and a Monique Weill-Caulier Scholar. This work was supported in part
by a grant from the Patterson Trust and by NIH grant 1R01NS064273 to S.S.

Received: September 17, 2008
Revised: December 22, 2008
Accepted: January 29, 2009
Published online: April 2, 2009

REFERENCES
transformations in the germinal matrices of the embryonic rat cerebral cortex.
Exp. Neurol. 107, 23–35.
An optical marker based on the UV-induced green-to-red photoconversion of
 giant protein, non-autonomously mediates maintenance of nervous system
architecture. Development 133, 3329–3340.
Processing, localization and binding activity of zonadhesin suggest a function
in sperm adhesion to the zona pellucida during exocytosis of the acrosome.
71–94.
IVE (Image Visualization Environment): a software platform for all three-dimen-
a PNS-specific, ZP domain protein required to connect mechanosensory
a restricted spatial expression in olfactory and vomeronasal neurons. Eur.
J. Neurosci. 21, 3291–3300.
Finn, R.D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V.,
Gao, F.B. (2007). Molecular and cellular mechanisms of dendritic morphogen-
Towing of sensory axons by their migrating target cells in vivo. Nat.
Neurosci. 7, 491–492.
22, 6029–6040.
Hao, J.C., Yu, T.W., Fujisawa, K., Culloti, J.G., Gengyo-Ando, K., Mitani, S.,
C. elegans slit acts in midline, dorsal-ventral, and anterior-posterior guidance
in a species-specific manner to the egg extracellular matrix is homologous to
Haubst, N., Georges-Labouesse, E., De Arcangelis, A., Mayer, U., and Gotz, M.
(2006). Basal membrane attachment is dispensable for radial glial cell fate
and for proliferation, but affects positioning of neuronal subtypes. Development
133, 3245–3254.
the growth cone: ligand-receptor complexes and the control of axon growth
PLAC1-homology region of the ZP domain is sufficient for protein polymerisa-
tion. BMC Biochem. 7, 11.
Kerjan, G., Dolan, J., Haumaitre, C., Schneider-Maunoury, S., Fujisawa, H.,
Sema6A controls cerebellar granule cell migration. Nat. Neurosci. 8, 1516–
1524.

354 Cell 137, 344–355, April 17, 2009 ©2009 Elsevier Inc.

