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Review
Polyglutamine (polyQ) repeat diseases are neurodegen-
erative ailments elicited by glutamine-encoding CAG nu-
cleotide expansions within endogenous human genes.
Despite efforts to understand the basis of these diseases,
the precise mechanism of cell death remains stubbornly
unclear. Much of the data seem to be consistent with a
model in which toxicity is an inherent property of the
polyQ repeat, whereas host protein sequences surround-
ing the polyQ expansion modulate severity, age of onset,
and cell specificity. Recently, a gene, pqn-41, encoding a
glutamine-rich protein, was found to promote normally
occurring non-apoptotic cell death in Caenorhabditis ele-
gans. Here we review evidence for toxic and modulatory
roles for polyQ repeats and their host proteins, respec-
tively, and suggest similarities with pqn-41 function. We
explore the hypothesis that toxicity mediated by gluta-
mine-rich motifs may be important not only in pathology,
but also in normal development.

Glutamine repeats in disease and development
Of the human nucleotide repeat diseases, ten are caused by
CAG expansions with the capacity to encode expanded
glutamine stretches within endogenous proteins. These
diseases, referred to as polyQ repeat diseases, include Hun-
tington’s disease (HD), six of the spinocerebellar ataxias
(SCA 1–3, 6, 7, 17), spino-bulbar muscular atrophy (SBMA),
and dentatorubral-pallidoluysian atrophy (DRPLA) [1–7]
(Table 1). HD-like 2 (HDL2) was also recently suggested
to derive from a polyQ expansion encoded by an antisense
mRNA from the Junctophilin-3 locus [8]. In addition to
expanded polyQ tracts, these human diseases share other
characteristics. With the exception of SBMA, all are domi-
nant gain-of-function disorders [9]. Neural tissue is the
principal site of pathology and, in both human patients
and animal models, insoluble protein aggregates containing
the mutant proteins are found within affected neurons – a
pathological hallmark of disease. However, differences
between these diseases are equally striking. The polyQ
expansions affect genes encoding proteins with little appar-
ent functional similarities, apart from generally broad ex-
pression patterns, and the diseases affect different regions
of the brain and different neuronal subtypes (with some
overlap) [9].

Poly-Q sequences have generally been discussed in the
context of human pathology. However, a recent study in C.
elegans suggests a role for a glutamine-rich protein, PQN-
41, in naturally occurring non-apoptotic developmental cell
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death [10]. The linker cell dies in the normal course of
C. elegans development, during gonadal morphogenesis of
the male [11–13] (Figure 1). Linker cell death is indepen-
dent of caspases and all other known apoptotic and necrotic
C. elegans cell-death genes [13,14]. Mutations in the pqn-
41 gene block linker cell death, suggesting an important
role in linker cell demise. Furthermore, transcription of
pqn-41 is induced immediately before the onset of cell
death, suggesting that this locus may be intimately con-
nected with the killing process [10]. pqn-41 encodes multi-
ple alternative transcripts, most of which can encode a
domain of 427 amino-acids, of which 35% are glutamines,
arranged in tracts of 1–8 residues in length [10].

The involvement of glutamines in neurodegenerative
human disease and in programmed cell death in C. elegans
begs the question of whether these processes are related.
Dying linker cells in C. elegans fail to display classic
apoptotic features. Instead, cell death is accompanied by
lack of chromatin condensation, nuclear envelope crenel-
lation, and swelling of cytoplasmic organelles. Intriguing-
ly, similar ultrastructural features are found in normally
dying cells during development of the vertebrate nervous
system [15–17], as well as in biopsy samples from polyQ
disease patients, and in mouse and cell-culture models of
polyQ disease [18–21]. These observations raise the possi-
bility that linker cell death and polyQ degeneration may
have common molecular features, and a number of obser-
vations support this possibility.

Below we examine what is known about the mechanism
of polyQ-induced degeneration, specifically as relevant to
assessing similarities and differences with PQN-41 func-
tion in C. elegans. This paper is therefore not intended as a
comprehensive description of the polyQ disease field, and
the reader is referred to other excellent recent reviews for a
more general discussion [9,22].

Are glutamines the business end?
The pqn-41 locus produces multiple alternative mRNAs.
One mRNA variant, pqn-41C, encodes only the C-terminal
glutamine-rich domain of the protein and is sufficient to
restore linker cell death to pqn-41 mutants. A sequence
immediately upstream of the region encoding this mRNA is
sufficient to induce expression of a reporter protein in the
linker cell immediately before the onset of cell death [10].
These results suggest that the glutamine-rich domain of
PQN-41 is a key effector of linker cell death.

The observation that proteins of apparently disparate
functions promote similar forms of neurodegeneration
when imbued with polyQ expansions suggests that the
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Table 1. PolyQ expansion disease proteins

Disease/process Protein Wild type Q length Pathogenic Q length Refs

Huntington’s disease (HD) Htt 6–34 36–121 [1]

Spinocerebellar ataxia 1 (SCA1) Ataxin-1 6–38, 39–44

CAT interrupteda

39–44 CAGs

uninterrupted; 45–91

[3]

SCA2 Ataxin-2 <32 32–500 [3]

SCA3 Ataxin-3 11–44 45–86 [3,5]

SCA6 CACNA1A 4–18 19–33 [3]

SCA7 Ataxin-7 4–19 34–460 [3]

SCA17 TATA-box binding

protein (TBP)

25–40 42–66 [3,4]

SBMA Androgen receptor 9–34 38–62 [2,6]

DRPLA Atrophin-1 6–35 49–93 [3]

HDL2 Unknownb 6–28 40–59 [8]

aCAG tract may be interrupted by 1–4 CAT sequences which affect pathogenicity of tract length.

bCAG expanded transcript was found to be derived antisense to junctophilin-3 (JPH3) [8].
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toxic element in polyQ diseases may be the polyQ peptide
itself. Indeed, the longer the repeat, the more severe the
disease and the earlier the age of onset [7]. Several other
observations support this notion.

Overexpression. Overexpression of polyQ fragments out-
side the context of the endogenous protein promotes
length-dependent toxicity in many model systems. For
example, overexpression of human huntingtin (Htt) exon
1 containing 115 to 150 glutamines in mice induces a
neurodegenerative phenotype similar to HD [23]. Similar-
ly, expression of polyQ-only peptides throughout the ner-
vous system of C. elegans promotes neurotoxicity, and
toxicity correlates with increased length of the polyQ
repeat [24]. In Drosophila, expression of a human Htt
fragment derived from exon 1 and containing an expanded
polyQ tract also promotes length-dependent cellular dys-
function [25,26]. These studies are all consistent with an
inherent toxicity of polyQ peptides.

Proteolysis. Several studies suggest that sequences sur-
rounding a polyQ stretch reduce its toxicity. These observa-
tions suggest the possibility that in neurodegeneration,
polyQ stretches might escape host protein protective
sequences through selective proteolysis. Although proteoly-
sis has not been described in some polyQ diseases, such
protein scission has indeed been reported in others [27]. The
contribution of Htt proteolysis to promoting pathogenesis
has been studied extensively. A variety of N-terminal frag-
ments housing the polyQ expansion are formed by proteo-
lytic cleavage of full-length polyQ-expanded Htt [28]. These
fragments can form toxic soluble oligomers in vitro [29].
Furthermore, biochemical studies of polyQ-expanded and
wild type Htt suggest that the expanded protein is more
susceptible to cleavage, presumably due to a conformational
difference resulting from the longer polyQ region [30]. A
particularly important cleavage event may be one generat-
ing a 586 amino-acid N-terminal fragment housing the
polyQ repeat. This fragment can be detected in mice expres-
sing the polyQ-expanded protein, and mice expressing this
fragment show neurodegeneration [31,32]. This N-terminal
fragment may itself be cleaved to form smaller fragments in
vivo. Mutations preventing at least some of these cleavage
events reduce toxicity in cultured neurons [31–34].

The cleavage at amino acid 586 has been proposed to be
mediated by caspase-6. Mice expressing Htt in which this
cleavage site is mutated show reduced degeneration and
fewer behavioral abnormalities compared to mice expres-
sing the unmodified expanded protein [35]. However, the
586 amino-acid fragment can still be detected in caspase-6
knockout mice [36], raising the possibility that other pro-
teases promote cleavage together with or independently of
caspase-6. Indeed, Htt cleavage by many different pro-
teases has been described, and cleavage at amino acid
402 by matrix metallopeptidase 10 (MMP-10) promotes
toxicity of mutant Htt in cultured neurons and in mouse
models [34].

In addition to Htt, there is evidence that other polyQ
disease-promoting proteins are susceptible to proteolysis,
which may contribute to toxicity. For example, mutation of a
caspase cleavage site in polyQ-expanded atrophin-1 (ATN1)
reduces toxicity in vitro [37]. Furthermore, ATN1 cleavage
products are found in patient brain tissue [38]; however, at
least in this case, a causative link between these fragments
and degeneration was not investigated. Similarly, proteoly-
sis of ataxin-3 (ATXN3) has been reported in mouse models
of spinocerebellar ataxia 3 (SCA3) and in human disease
tissue [39,40]. In a Drosophila model of SCA3, mutation of
proposed caspase cleavage sites in ATXN3 dramatically
reduces production of polyQ-enriched fragments [41] and
ameliorates degeneration caused by polyQ-expanded
ATXN3. Ataxin-7 (ATXN7) cleavage by caspase 7 at amino
acid 266 also enhances its toxicity in vitro [42], and cytotox-
icity of the expanded androgen receptor is enhanced by
caspase cleavage at amino acid 146 [43].

Alternative splicing. Alternative splicing could theoreti-
cally also produce proteins specifically enriched in the
polyQ moiety, and has been documented for several polyQ
disease genes, including ATN-1 [44], the a1A voltage-de-
pendent calcium-channel [45], and ATXN3 [46,47]. How-
ever, roles for transcript variants in disease have not been
extensively explored.

Together, the studies reviewed here suggest that pro-
tein fragments enriched in glutamines can promote cell
death in the context of linker cell death in C. elegans and at
least in some polyQ diseases.

Continuous or interrupted polyQ tracts?
In C. elegans, fusion of PQN-41C, composed of interrupted
runs of glutamines, to green fluorescent protein (GFP),
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Figure 1. Linker cell death is controlled by PQN-41. The Caenorhabditis elegans

male-specific linker cell (red) dies at the L4-adult transition at the posterior of the

animal next to the cloacal tube light (grey) [11–13]. A differential interference

contrast (DIC) image of the dying linker cell (LC) shows its engulfment by a

binucleate neighboring cell. Linker cell death is controlled by PQN-41 downstream

of MAPKK SEK-1 and TIR-1 [10].
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promotes aggregate formation in the linker cell. Second-
ary-structure prediction algorithms suggest that PQN-
41C has a high propensity for forming coiled coils [10],
supersecondary helical structures that mediate protein–
protein interactions and oligomerization. Importantly,
mutations predicted to disrupt the coiled-coil motifs par-
tially or fully abrogate the ability of PQN-41C to rescue
pqn-41 mutants [10,48]. Additional experiments are re-
quired to determine whether aggregation is an intrinsic
property of PQN-41C (and not influenced by the GFP tag or
interacting proteins) and whether this aggregation is
required for PQN-41C toxicity.

Exactly how expansion of the polyQ tract in human
disease leads to toxicity remains unclear. One hypothesis
is that the length-dependence of toxicity is tied to struc-
tural transitions of the protein. Supporting this idea,
expansion of the polyQ tract increases the propensity
for protein aggregation and inclusion body formation.
Thus, aggregation may be crudely used to monitor struc-
tural transitions in the protein. It is important to note that
the link between aggregation and toxicity remains highly
debated. It has been suggested that, at least in the case of
Htt, a soluble oligomeric form may be the toxic species, and
that the large insoluble aggregates are non-toxic, and
perhaps even protective [49,50]. Some studies suggest
that long polyQ repeats have a propensity to form b sheets
stabilized by intermolecular hydrogen bonds between
main chain and side chain amides [51]. It is the formation
of these b sheets, or ‘polar zippers’, that might promote
aggregation. Other studies suggest that the polyQ tracts
cause the host protein to unfold partially, resulting in
solvent exposure of hydrophobic residues and the amide
backbone, thus increasing the propensity to aggregate
[52–54].

Recently, Fiumara et al. [55] proposed that aggregation
of polyQ disease proteins and their interacting partners, as
well as oligomerization/aggregation of some glutamine/
asparagine (Q/N)-rich protein domains, may be mediated
by their propensity to form coiled coils [55]. Supporting this
assertion, circular dichroism measurements of polyQ pep-
tides reveals helical structure. Furthermore, disruption of
coiled-coil domain formation in the Htt exon 1 sequence
170
containing an expansion of 72 glutamine residues
decreases its propensity to aggregate and its toxicity in
HEK293 cells [55]. This study, therefore, supports the
possibility of a structural relatedness between pure polyQ
sequences and glutamine-rich motifs.

Indeed, although a large body of evidence implicates
uninterrupted polyQ peptides in toxicity in culture and in
vivo [56], a strictly homogeneous peptide sequence may not
be required to induce a structural transition and/or toxicity.
For example, a glutamine–alanine repeat peptide derived
from the Htt-interacting protein CA150 spontaneously
aggregates with similar kinetics to that of an uninterrupted
polyQ peptide of the same length [57]. Furthermore, the
same study showed that the glutamine-alanine aggregates
can seed polyQ peptide elongation [57]. In another study, the
insertion of two alanines in the center of a glutamine peptide
was also found to have a minimal effect on aggregration [58].
These experiments suggest that interrupted polyQ peptides
can aggregate readily; however, it remains to be tested
whether any of these sequences can promote toxicity in vivo.
Indeed, studies of ATXN1 indicate that interruption of the
homogenous polyQ domain by histidine residues reduces
SCA1 pathogenesis even above the typical polyQ length
threshold required for disease [59,60].

The genetic instabilities that lead to CAG genomic
expansions are unlikely to result in impure polyQ repeats
because repeat formation likely occurs through DNA ho-
mology-seeking mechanisms. Thus, even if interrupted
glutamine repeats could produce human disease, identify-
ing patients with such lesions is exceedingly unlikely.
However, evidence for the possible role of interrupted
glutamine-rich domains in human neurodegeneration
has been obtained from studies of amyotrophic lateral
sclerosis (ALS), another neurodegenerative disease. Muta-
tions in the gene TDP43 promote ALS, and TDP-43 protein
aggregates are found in ALS patients [61,62]. Most TDP-43
mutations in patients affect the C-terminal glycine-rich
domain. Fuentealba et al. [63] argue that the portion of the
TDP-43 protein critical for its sequestration in the cytosol
is more accurately characterized as a glutamine/aspara-
gine (Q/N)-rich domain [62,63]. Similar domains are found
in yeast prions that are prone to aggregation [64–66] and,
as described above, tend to form coiled coils. The C-termi-
nal region of TDP-43 seems to allow coaggregation with
polyQ disease proteins including Htt [63]. Furthermore,
intermediate-length polyQ expansions in ATXN2 are a risk
factor for ALS [67].

Taken together, the results described here, although not
definitive, raise the possibility that runs of glutamines in
PQN-41C or polyQ disease peptides may not be the essen-
tial determinant of toxicity. Instead, it may be a specific
protein secondary structure (perhaps a coiled coil) that is
the relevant effector of cell death.

No polyQ peptide is an island
mRNAs encoding the glutamine-rich region of PQN-41
fused to upstream sequences can lead to enhanced linker
cell survival in wild type animals [10]; and GFP fusion to
these larger proteins are not found in aggregates. Thus,
sequences surrounding the glutamine-rich domain may
modulate toxicity.
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Similarly, sequences outside the polyQ tract can influ-
ence the kinetics of aggregation of polyQ-expanded pro-
teins [68]. For example, using b-lactamase as a model
protein scaffold, it was observed that internal insertion
of successively longer polyQ tracts promoted aggregation
into amyloid-fibrils as the structural integrity of the flank-
ing b-lactamase moiety was compromised [69]. This sug-
gests that the inherent propensity for polyQ tracts to
aggregate can be countered by conformational constraints
of the host protein up to a critical threshold repeat size.
Similar host protein constraints have been observed in Htt,
in which the flanking polyproline sequence can suppress
the aggregation of the polyQ-expanded protein [70].

The MAP kinase SEK-1 was shown to promote linker
cell death [10], suggesting that substrate phosphorylation
likely plays a role in this process. Whether PQN-41 is the
relevant target for SEK-1 is, however, not yet known. Post-
translational modification of polyQ disease proteins can
have well-defined effects on protein function. Htt, for ex-
ample, is extensively modified. Acetylation at lysine 444 is
observed in human HD patients, and has been shown to
promote clearance of the mutant protein by targeting it to
autophagosomes for degradation [71]. This modification is
largely unique to the expanded form of the protein, and
mutation of the modification site results in increased
aggregation and toxicity in cultured cells and in a mouse
model [71]. Toxicity of polyQ-expanded ATXN7 may also be
regulated by acetylation. Cleavage of this protein at amino
acid 266 enhances its toxicity in culture [42] (see above),
however, the polyQ-containing cleavage product is cleared
by macroautophagy. Acetylation of lysine 257 blocks deg-
radation of the toxic ATXN7 peptide, enhancing toxicity
[72].

The association between pathogenesis and phosphory-
lation of residues in the conserved 17 N-terminal amino
acids of Htt has recently come into focus. Phosphate addi-
tion has been described at threonine 3 (T3) and at serines
13 and 16 (S13 and S16) of Htt, with all three modifications
apparently reducing toxicity of polyQ-expanded Htt
[32,73,74]. Similarly, a phospho-mimetic T3D mutation
reduces toxicity of polyQ-expanded Htt in a Drosophila
model, although in this case increased aggregation is found
[73]. Similarly, phospho-mimetic mutations at S13 and S16
reduce polyQ-expanded Htt neurotoxicity (and aggrega-
tion) in the mouse [74], and phospho-resistant S13A and
S16A mutations do not affect toxicity [74]. A possible
mechanism explaining reduced toxicity of the phosphory-
lated protein may be that these modifications promote
protein degradation by the lysosome and proteasome [75].

And neither is its host protein
Although the role of C. elegans pqn-41 outside the linker cell
has not been studied, at least some transcripts are
expressed in most cells in the animal [10]. Furthermore,
animals carrying pqn-41 mutations are slow-growing and
defective in egg-laying. Thus, pqn-41 may be important at
some level for the basic function of all cells [10]. It is
therefore possible that pqn-41-derived death-promoting
transcripts expressed in the linker cell interfere with nor-
mal pqn-41 function. Supporting this idea, expression of an
N-terminal domain of PQN-41 without the glutamine-rich
region seems to prevent linker cell death in otherwise wild
type animals [10].

Several recent studies suggest that polyQ expansions
may also promote disease by altering the native functions
of their host proteins. A striking example of this idea is
described by Duvick et al., studying ATXN1 [76]. The
authors demonstrated that substitution of a phospho-mim-
icking aspartic acid for serine 776 in wild type ATXN1
induces Purkinje cell disease sharing many features with
SCA1. These observations suggest that altering wild type
ATXN1 functions may contribute to polyQ disease. Indeed,
ATXN1 normally binds the RNA splicing factor RBM-17
and the transcriptional repressor Capicua, and the relative
strengths of these interactions are affected by the length of
the polyQ repeat as well as by phosphorylation of serine
776 [77]. However, Duvick et al. report that, unlike SCA1,
neuronal cell death is not observed in the serine 776
mutant, supporting the idea that the inherent toxicity of
the polyQ moiety still plays an important role in disease
pathology [76].

Models of SBMA also suggest that disease progression
may depend on native androgen receptor (AR) functions.
Binding of polyQ-expanded AR to its normal ligand, tes-
tosterone, is required for toxicity [78,79]. Furthermore,
upon ligand binding, wild type AR accumulates in the
nucleus and binds DNA. Although expression of a polyQ-
expanded AR promotes cell degeneration in the Drosophila
eye, expression of a similar protein with a defective DNA-
binding domain fails to induce degeneration even in the
presence of ligand [80]. In addition, the AR interacts with
transcription factors through its AF1 and AF2 protein
domains. Disruption of the AF2 interaction surface can
also rescue polyQ-expanded AR toxicity [80]. These results,
together with the observation that overexpression of wild
type AR can promote toxicity similar to that observed with
polyQ-expanded AR in both Drosophila and mice [80,81],
suggest that pathogenesis may arise, at least in part, from
amplification of AR activity in the nucleus.

Thus, death-independent functions of both PQN-41 and
polyQ disease proteins may modulate cellular toxicity.

Cell- and age-specific toxicity
PolyQ-mediated pathogenesis is markedly specific, at least
at early stages of disease, affecting well-defined subsets of
cells, despite broad expression of the proteins. Although
several studies have shown that there is relative uniform
expression of the disease proteins [82–84], it is possible
that even small changes in protein concentration, which
may be below the limits of experimental detection, could
have a large impact on aggregation kinetics [85]. Indeed,
broadly expressed promoters driving disease genes can
cause disease in atypical cell populations for the given
disease [32].

Another plausible determinant of cell specificity is that
proteins that modify or interact with polyQ-expanded
proteins may function or be expressed in a cell-specific
manner. Rhes, a small G protein specifically expressed in
striatum, binds to polyQ-expanded Htt, promoting its
SUMOylation and increased toxicity [86,87]. Havel et al.
(2011) showed that phosphorylation of serine 16 of Htt N-
terminal fragments results in increased nuclear Htt, an
171
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important step for pathogenesis [88,89]. In vitro studies
suggest that S16 is highly phosphorylated when Htt is
incubated with striatal lysates but not with cortical or
cerebellar lysates [88], suggesting that cell-specific kinases
or kinase levels are in action. However, this kinase speci-
ficity is at odds with the seemingly protective roles of S16
phosphorylation (see above), and further studies are re-
quired to determine the full significance of these results.

Cell-specific cleavage of polyQ proteins may also account
for cytotoxic specificity. A recent paper [90] showed that
calcium-dependent calpain cleavage of mutant ATXN3 is
promoted by excitation-induced rise in calcium levels in
neurons. This effect could explain the restriction of SCA3
pathology to neurons with specific activity profiles, although
the ability of cleaved ATXN3 to mediate neurodegeneration
in vivo has not yet been conclusively shown [90].

The problem of cell specificity may also relate to that of
late onset of polyQ diseases. Indeed, even early-onset
patients must express disease proteins for years before
clinical signs are evident. Although damage could be cu-
mulative, manifesting clinically only after a substantial
number of cells have degenerated, another possibility is
that polyQ peptides are insufficient on their own to induce
cellular degeneration. Other cellular defects, which may be
cell-specific, could then contribute to disease. A possible
effector of such a two-hit mechanism is the proteasome.
Indeed, proteasome function has been shown to decline
with age [91], and the proteasome has been implicated in
pathogenesis of polyQ-expansion diseases in vertebrates
(see above) and in C. elegans models [92,93].

A one-two punch hypothesis is particularly appealing in
the case of linker cell death in C. elegans. Although pqn-41
can promote cell death, mutations in the gene do not block
linker cell death fully [10]. Furthermore, overexpression of
PQN-41C in other cells in the animal or in the linker cell,
well before the cell normally dies, does not promote ectopic
cell death [10]. Thus, pqn-41 alone seems to be insufficient
to induce death, and may require a specific cellular setting
to express its effects. Thus, as with polyQ disease proteins,
PQN-41 function in promoting cell death is highly depen-
dent on cellular and temporal context.

Concluding remarks
The morphological and molecular similarities between
polyQ-induced neurodegeneration and linker cell death
in C. elegans are intriguing, and suggest the highly specu-
lative but exciting possibility of a shared mechanism of
toxicity. These results also raise the possibility that polyQ
disease may reflect, in part, inappropriate activation of an
endogenous developmental cell-death program. Ultra-
structural similarities among linker cell death, polyQ-in-
duced neurodegeneration, and developmental cell death in
the vertebrate nervous system support this idea [13,15–
21]. Furthermore, the kinase scaffold protein TIR-1 is
important for linker cell death in C. elegans, and its
Drosophila and mouse homologs, dSarm and Sarm, respec-
tively, were recently implicated in the progression of
Wallerian degeneration, a form of neuronal process degen-
eration suppressed by the Wlds fusion protein [10,94].
Thus, a molecular link between linker cell death and
neurodegeneration is already established.
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The vertebrate proteins most similar in motif structure
to PQN-41 are MED12 and p400, which have glutamine-
rich C termini and have been implicated in tumor forma-
tion [95,96], a process requiring evasion of cell death.
Interestingly, p400 was identified as a potentially con-
served interactor (interlog) in the ataxia network generat-
ed by Lim and colleagues [97]. These results hint at
similarities between linker cell death and known verte-
brate neurodegenerative processes.

Nonetheless, several questions must be addressed to
solidify or refute the notion of similarity between these cell
death processes. For example, the requirement for unin-
terrupted glutamine stretches in disease contrasts with
the interspersed glutamine-rich domain of PQN-41. Are
these differences significant? Besides glutamine-rich
motifs, are there other common molecular regulators of
these cell death processes? Are glutamine-rich proteins
important in vertebrate developmental cell death? What
is the lethal blow to the cell, and is this event the same in
both paradigms?

Linker cell death research is at an early stage, and the
answers to the questions raised here, as well as many
others, are not yet known. Nonetheless, if future studies
do suggest a link between linker cell death and polyQ
disease, the implications could be important. C. elegans is
an excellent organism for gene discovery, and would offer
a promising setting for characterizing the genetics and
cell biology of key genes involved in disease pathogenesis.
Furthermore, mechanistic similarities between linker
cell death and polyQ disease would allow linker cell
death to model the diseases in both research and therapy
applications.
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