A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC

Graphical Abstract

Highlights

- Glia discriminate among their associated neurons
- Glia impact neuron shape/function by control of the neuronal ionic microenvironment
- Chloride ions are inhibitory ligands of receptor guanylyl cyclases
- cGMP inhibits sensory microvilli shape through WASP and independent of CNG channels

Authors

Aakanksha Singhvi, Bingqian Liu, Christine J. Friedman, Jennifer Fong, Yun Lu, Xin-Yun Huang, Shai Shaham

Correspondence

shaham@rockefeller.edu

In Brief

Glia regulate the shape and function of restricted subsets of the neurons they ensheath by modulating the ionic microenvironment, thereby controlling specific aspects of animal behavior.
A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC

Aakanksha Singhvi,1 Bingqian Liu,2 Christine J. Friedman,1,3 Jennifer Fong,1,4 Yun Lu,1 Xin-Yun Huang,2 and Shai Shaham1,*

1Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
2Department of Physiology, Weill Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
3Present address: St. George’s University School of Medicine, Grenada, West Indies
4Present address: SUNY Downstate Medical Center, College of Medicine, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
*Correspondence: shaham@rockefeller.edu
http://dx.doi.org/10.1016/j.cell.2016.03.026

SUMMARY

Neurons receive input from the outside world or from other neurons through neuronal receptive endings (NREs). Glia envelop NREs to create specialized microenvironments; however, glial functions at these sites are poorly understood. Here, we report a molecular mechanism by which glia control NRE shape and associated animal behavior. The C. elegans AMsh glial cell ensheathes the NREs of 12 neurons, including the thermosensory neuron AFD. KCC-3, a K/Cl transporter, localizes specifically to a glial microdomain surrounding AFD receptive ending microvilli, where it regulates K+ and Cl− levels. We find that Cl− ions function as direct inhibitors of an NRE-localized receptor-guanylyl-cyclase, GCY-8, which synthesizes cyclic guanosine monophosphate (cGMP). High cGMP mediates the effects of glial KCC-3 on AFD shape by antagonizing the actin regulator WSP-1/NWASP. Components of this pathway are broadly expressed throughout the nervous system, suggesting that ionic regulation of the NRE microenvironment may be a conserved mechanism by which glia control neuron shape and function.

INTRODUCTION

Neurons receive information from the environment or other neurons through dendritic structures termed neuronal receptive endings (NREs). In the mammalian CNS, postsynaptic neurons receive excitatory inputs at NREs termed spines, actin-rich receptive endings that protrude from the dendrite shaft. Developmental and experience-dependent remodeling suggests that plasticity of spine morphology may correlate with learning and memory (Bourne and Harris, 2008). Perturbations in spine shape are associated with disorders, including epilepsy, dementia, schizophrenia, Huntington’s disease, Alzheimer’s disease, and fragile X syndrome (Penzes et al., 2011). Spines are often ensheathed by astrocytic glia (Chung et al., 2015). Gial cues are implicated in spine shape control; however, mechanisms by which they regulate spine morphology in vivo are not well understood (Christopherson et al., 2005; Chung et al., 2015; Murai et al., 2003).

Sensory NREs are comprised of microtubule-based cilia or actin-based microvilli and are also glia approximated. Sensory NRE shape perturbation leads to sensory deficits and is common in patients with congenital defects, such as deafness, blindness, Usher’s syndrome, or inherited conditions, such as retinal degeneration. Genetic lesions underlying these syndromes affect sensory organ glia or associated neurons/neuron-like cells (Estrada-Cuzcano et al., 2012; Kremer et al., 2006). Glial mediators of sensory NRE shape are not known.

Glia often provide trophic support for neurons, complicating the investigation of their roles in NRE shape control in vivo. Caenorhabditis elegans AMsh glia, which envelop neurons of the amphid sense organ, resemble mammalian glia but are dispensable for neuron survival. Thus, they are an excellent model to study glial control of NRE shape in vivo (Shaham, 2010). The AMsh glial cell enshakes microvilli NREs of the AFD thermosensory neuron, as well as NREs of 11 other neurons, including the ciliated NRE of the AWC chemosensory neuron (Figure 1A) (Ward et al., 1975). We have previously shown that ablation of AMsh glia disrupts AFD microvilli and AWC cilia NREs (Bacaj et al., 2008). Whether this reflects passive or active glial roles was unclear. Furthermore, molecules mediating glial contribution to NRE shape were unknown.

AFD NREs consist of microvilli and a single simple cilium (Figure 1A) (Doroquez et al., 2014; Perkins et al., 1986). Biogenensis of C. elegans cilia has been explored (Inglis et al., 2007). However, mutations in genes affecting cilium development only weakly perturb AFD-dependent thermosensation and do not affect the length, number, or distribution of AFD microvilli (Figure S1A) (Perkins et al., 1986; Tan et al., 2007). Conversely, mutations in the gene ttx-1 block microvilli formation and disrupt temperature sensation, but leave the AFD cilium intact (Procko et al., 2011; Satterlee et al., 2001). Thus, different molecular programs control cilium and microvilli structures,
and microvilli are important for AFD-mediated thermosensation. Shape control of microvilli NREs is poorly understood in any system.

Here, we report a mechanism by which a sense organ glial cell continuously regulates the shape of a microvilli-based sensory NRE and its associated animal behavior by regulating the NRE microenvironment. We find that an AMsh glia-expressed K/Cl co-transporter, KCC-3, regulates AFD NRE shape and C. elegans thermosensory behavior by controlling Cl\(^-\)/C\(^0\) levels surrounding AFD NREs. Cl\(^-\) ions directly inhibit the AFD neuron-specific receptor guanylyl cyclase (rGC) GCY-8 by binding to the conserved S(x)GpxC motif in its extracellular domain. GCY-8 determines cyclic guanosine monophosphate (cGMP) levels within AFD, along with the phosphodiesterases PDE-1 and PDE-5. High cGMP levels antagonize the actin regulator WSP-1/WASP, blocking NRE growth.

While KCC-3 affects AFD neuron shape, it is not required for AWC neuron NRE maintenance. KCC-3 localizes to a glial microdomain surrounding the AFD NRE, but not around the AWC NRE. Thus, a single glial cell discriminates between the different neurons with which it associates.

Homologous and analogous components of this pathway are expressed throughout the CNS/peripheral nervous system of many species. Our results suggest that ionic modulation of receptor activity at NREs may be a conserved mechanism by which glia regulate NRE shape and function.

RESULTS

Glia-Secreted and/or Membrane-Bound Factors Control AFD NRE Shape

To determine whether AMsh glia provide merely passive structural support or whether active signaling promotes AFD NRE shape acquisition, we aimed to determine whether glia-secreted or membrane-bound proteins are required for AFD microvilli shape control. We generated animals containing a dominant-negative version of the endoplasmic reticulum-Golgi trafficking regulator RAB-1 (RAB-1S25N) under control of the AMsh glia-specific and temperature-sensitive ver-1 promoter. This construct is predicted to block exocytic traffic of secreted and membrane proteins at 25°C (Satoh et al., 1997). Thus, transient incubation at 25°C for 24 hr leaves glia structurally intact but should impair signaling. Using this tool, we blocked glial secretion in young...
adults. A pronounced defect in AFD and AWC NRE shape was observed, mimicking the effects of glia ablations (Figures 1B and S2A). By contrast, non-transgenic animals raised at 15°C and transferred as L4 larvae to 25°C or transgenic animals raised at 15°C (Figure 1B) have normal AFD microvilli. Thus, secreted or membrane-bound glial cues are required continuously to maintain AFD microvilli shape post-development. Glia-dependent dynamic plasticity of sensory structures had not been previously appreciated.

KCC-3 Is a Regulator of AFD NRE Shape and Function

To identify the relevant glial cues controlling AFD microvilli shape, we performed candidate mutant and RNA interference screens focused on inactivating glia-enriched genes encoding membrane or secreted proteins (Bacaj et al., 2008). We found that mutations in the kcc-3 gene result in AFD microvilli loss (Figures 1C–1F). KCC-3 encodes a predicted K/Cl co-transporter homologous to human solute carrier protein SLC12A4, a protein predicted to require RAB-1-mediated trafficking for membrane localization. A null lesion in the gene, kcc-3(ok228), results in temperature- and age-dependent loss of AFD NREs. Ninety-six hour ok228 mutants are similar to those reported for AMsh glia-ablated animals (Bacaj et al., 2008), suggesting that KCC-3 is a major mediator of the glial effect on AFD.

The behavior and NRE shape defects we observed in kcc-3(ok228) mutants are similar to those reported for AMsh glia-ablated animals (Bacaj et al., 2008), suggesting that KCC-3 is a major mediator of the glial effect on AFD.
AMsh glia-specific promoter, rescued kcc-3(ok228) AFD neuron shape defects (Figure 2C). Thus, KCC-3 functions specifically in AMsh glia to control AFD NRE shape.

KCC-3 Localization Is Restricted to a Glial Microdomain Surrounding AFD NREs

AMsh glia ensheath sensory NREs of other neurons, such as AWC, in addition to those of AFD. Furthermore, AMsh glia ablation or exocytosis block with RAB-1\(^{52SN}\) disrupts the NRE structure of these neurons (Figure S2A) (Bacaj et al., 2008). Thus, a general mechanism may underlie NRE shape control by glia. Surprisingly, however, we found that kcc-3 mutations do not affect AWC NREs (Figures S2A, S2C, and S2D). To investigate the origin of this specificity, we examined KCC-3 subcellular localization using a genomic fosmid clone containing the kcc-3 locus recombineered with GFP immediately upstream of the kcc-3 stop codon or a clone in which a kcc-3 cDNA is tagged with mCherry and expressed under an AMsh glia-specific promoter. We found that KCC-3 localizes to the portion of the AMsh glia apical domain in which AFD microvilli are embedded and is conspicuously absent from the region surrounding AWC or any other amphid neuron (asterisk, Figures 2D and 2E). Restricted localization, therefore, likely explains the specific effects of KCC-3 on AFD receptive endings.

Thus, contrary to our initial assumption, the AMsh glial cell employs different molecular mechanisms to control AFD and AWC receptive ending shape. While single glial cells in other systems also contact multiple neurons, whether they discriminate between these neurons has been a major outstanding question. Our results provide definitive in vivo evidence that they can do so.

Glial KCC-3 Regulates AFD NRE Shape by Regulating K\(^+\) and Cl\(^-\) Levels

KCC channels transport K\(^+\) and Cl\(^-\) ions across membranes (Russell, 2000). We wondered, therefore, whether ionic imbalance may underlie AFD defects in kcc-3(ok228) mutant animals. To test this, we compared AFD receptive ending defects in kcc-3(ok228) mutants cultivated on standard \(\text{C. elegans}\) growth medium and those raised on plates supplemented with 150 mM KCl. Remarkably, AFD microvilli morphology in kcc-3(ok228) mutants raised on high KCl was largely normal (Figure 2F; “KCl-acute”).

To determine whether both K\(^+\) and Cl\(^-\) were required for rescue, we raised kcc-3(ok228) mutants on plates supplemented with 150 mM Na\(^+\)Cl\(^-\) or K\(^+\)acetate. While modest rescue was seen in younger animals in both cases, this was not sustained in older animals (Figure 2F).

Thus, K\(^+\) and Cl\(^-\), regulated by KCC-3, are acutely required to control AFD microvilli shape. Furthermore, the specific localization of KCC-3 to glial membranes around AFD strongly suggests that these ions function in the vicinity of the AFD NRE.

KCC-3 Regulates AFD NRE Shape through the AFD-Specific rGC, GCY-8

AFD neuronal activity requires a cyclic nucleotide-gated (CNG) channel composed of the TAX-2 \(\beta\) subunit and the TAX-4 or CNG-3 \(\alpha\) subunits (Cho et al., 2004; Coburn and Bargmann, 1996; Komatsu et al., 1996). CNG channels allow cations (Na\(^+\), K\(^+\), and Ca\(^+\)) to flow across membranes down their electrochemical gradients. Our finding that medium supplementation with K-acetate fails to rescue kcc-3(ok228) mutants suggested that impaired K\(^+\) conductance through these cation channels is unlikely to fully explain the AFD NRE defects of these mutants. To test this directly, we examined tax-4 and cng-3 single mutants or tax-4;cng-3 double mutants. We found that these animals have only minor defects in AFD microvilli length, with some exhibiting elongated and disorganized microvilli (Figure 2G; hatched bars). Furthermore, mutations in genes functioning in downstream interneurons (tx-3) or in adaptation of other neurons (egI-4) also have no effect on AFD shape (Figure S1B). Thus, the effects of KCC-3 on AFD shape cannot be entirely explained by reduced CNG channel conduction and appear independent of downstream circuit dynamics.

We considered the possibility that glial KCC-3 defects could lead to increased K\(^+\) and Cl\(^-\) accumulation in the extracellular space surrounding AFD microvilli, leading to hyperactive signaling through CNG channels. If this were the case, CNG channel mutations should mitigate the AFD shape defects of kcc-3(ok228) mutants. However, we found that tax-4 mutations did not suppress kcc-3(ok228) defects at all (Figure 2G). Our data, therefore, suggest that neuronal activity is not the primary effector of KCC-3 for AFD microvilli shape control. We therefore sought another neuronal effector.

CNG channels are activated by cGMP, synthesized by receptor guanylyl cyclases (rGCs). rGCs are type I transmembrane proteins with extracellular (ECD), transmembrane (TM), kinase-homology (KHD), hinge (H), and guanylyl cyclase catalytic (CAT) domains (Figure 3A). The AFD neuron expresses the rGCs GCY-8, GCY-18, and GCY-23, which function redundantly to regulate thermotaxis behavior (Inada et al., 2006; Yu et al., 1997). We examined gcy-8(tm949), gcy-18(nr38), and gcy-23(ok797) single loss-of-function mutants and found no defects in AFD receptive ending shape. Remarkably, however, the gcy-8(tm949) lesion, predicted to eliminate GCY-8 cyclase activity, strongly mitigates the AFD microvilli defects of kcc-3(ok228) mutants (Figures 3B and S3). This effect is largely specific to gcy-8, as the gcy-23(ok797) loss-of-function allele only weakly rescues the AFD NRE defects of kcc-3(ok228) mutants (Figure 3B). Intriguingly, a genomic fosmid, in which GFP sequences are fused just upstream of the gcy-8 stop codon, is expressed specifically in AFD, and GFP fluorescence is localized to AFD microvilli (Figure S4A), consistent with previous studies.

Together, our studies suggest that GCY-8 is a key effector of KCC-3, and loss of KCC-3 results in an increase in GCY-8 activity.

Increased GCY-8 Activity, through KHD Inactivation, Blocks AFD NRE Extension

The hypothesis that increased GCY-8 activity mediates the effects of glial kcc-3 lesions was serendipitously corroborated by results of a genetic screen we conducted seeking mutants with defective AFD microvilli. From 10,800 F2 progeny examined (3.5 genomes), we recovered six relevant mutants. Genetic mapping, whole-genome sequencing, and transformation rescue
studies revealed that one of these, ns335, has a causal lesion in gcy-8. The gcy-8(ns335) mutation is predicted to cause a G707E change in a highly conserved D(F/H/Y)G motif within the kinase homology domain (Figures 3A, 3C, and S3A). This lesion has not been previously described in other rGCS.

Fluorescence microscopy revealed that gcy-8(ns335) mutants have fewer and shorter AFD microvilli (Figure 3D), and we confirmed this using serial-section transmission electron microscopy (TEM) (Figures 3E and 3F) and focused ion beam scanning EM (FIB-SEM) (Figures 3G and 3H; Movies S1, S2, S3, and S4). Using TEM, we found that while wild-type AFD neurons have 43 ± 8 microvilli (n = 6), gcy-8(ns335) mutants have 12 ± 1 (n = 4) microvilli. SEM image analysis showed maximal microvilli length of 2.5 μm for wild-type animals, but only 1.5 μm for gcy-8(ns335).

gcy-8(ns335)/+ heterozygotes do not show AFD NRE abnormalities, and the defects of gcy-8(ns335) homozygotes are rescued by expression of wild-type genomic sequences (Figure 3I), demonstrating that ns335 is a recessive allele. However, gcy-8(tm949) mutants, lacking the GCY-8 cyclase domain, have no effect on AFD microvilli shape and suppress kcc-3(ok228) mutant defects (Figure 3B). Thus, gcy-8(ns335) is unlikely to be a loss-of-function allele.

Supporting this idea, while gcy-8(tm949) mutants have near-normal thermotaxis behavior on a linear thermal gradient (Wasserman et al., 2011), gcy-8(ns335) mutants accumulate at low temperatures (15°C), regardless of their cultivation temperature (Figures 3J and 3K). Furthermore, unlike gcy-8(tm949), the gcy-8(ns335) allele does not suppress the AFD NRE shape defects of kcc-3(ok228) (Figure S4B). Thus, gcy-8(ns335) appears to be a gain of GCY-8 function. The recessive nature of gcy-8(ns335) could be explained by the observation that rGC dimerization is essential for function (Potter, 2011). Formation of the dimer is controlled by a conserved glycine at position 602 (Figure 3A). The glycine is conserved across all rGCs, and the glycine mutated in gcy-8(ns335) is conserved across all gcy-8 family members (Figure 3J).
of heterodimeric mutant/wild-type GCY-8 complexes in gcy-8(ns335)/+ heterozygotes would be predicted to reduce cyclase activity. Indeed, expression of a cyclase-dead GCY-8 D976A protein in AFD can rescue gcy-8(ns335) microvilli defects (Figure 4A), presumably by promoting non-productive dimer formation as is the case for equivalent mutations in other rGCs (Thompson and Garbers, 1995).

The gcy-8(ns335) mutation results in a G707E substitution in a conserved D(F/H/Y)G motif in the kinase-homology domain (KHD) of GCY-8 (Figures 3A, 3C, and S3A). Deletion of the KHD of the human rGC NPR1 enhances cyclase activity in cell-culture experiments (Koller and Goeddel, 1992). Thus, the gcy-8(ns335) mutation may block the inhibitory effect of the KHD domain on cyclase activity. To understand the role of the KHD, we first developed an in vivo assay for GCY-8 function. Specifically, we found that overexpression of a GCY-8 cDNA in AFD neurons of otherwise wild-type animals using an AFD promoter:gcY-8 cDNA plasmid injected at high copy promotes microvilli loss (Figure 4A). Thus, increased GCY-8 activity leads to AFD NRE loss. Furthermore, expression of full-length GCY-8 containing an E1057A mutation, whose equivalent hyper-activates other rGCs (Wedel et al., 1997), weakly but significantly exaggerated the effects of wild-type GCY-8 overexpression (Figure 4A). We also generated wild-type animals expressing the cyclase-dead GCY-8D976A protein. This single amino-acid substitution curtailed the ability of GCY-8 overexpression to block microvilli growth (Figure 4A).

To test the effect of the KHD domain on cyclase activity, we first showed that overexpressing a fragment of GCY-8 consisting only of the HCAT domain was sufficient to elicit AFD microvilli defects (Figure 4A). Similar constructs for other rGCs have constitutive cyclase activity in cell-culture studies (Thompson and Garbers, 1995). As expected if gcy-8(ns335) is a gain-of-function allele, expression of the hyper-activated GCY-8 HCAT fragment fails to rescue gcy-8(ns335) defects (Figure 4A). However, AFD microvilli NRE loss was abrogated if the HCAT domain was fused to the KHD domain, with or without the transmembrane domain (KHD-HCAT or TM-KHD-HCAT) (Figure 4B). Of note, while the TM-KHD-HCAT protein rescues gcy-8(ns335), the KHD-HCAT protein fragment does so significantly less efficiently (Figure 4B), suggesting that membrane localization of GCY-8 is important for its dimerization and cyclase activity regulation. Our results suggest that elevated cyclase activity, affected by inhibition of the KHD domain, blocks AFD NRE extension.

Our findings also suggest that the conserved DFG motif, mutated in gcy-8(ns335) animals and present in the KHD of all rGCs, is likely the relevant element mediating cyclase inhibition by the KHD domain in vivo.
Our finding that glial kcc-3 mutant defects can be overcome by inactivating GCY-8 in AFD neurons suggests that GCY-8 may have constitutive cyclase activity that is inhibited by KCC-3. Consistent with this idea, we found that overexpression of either GCY-8 or the orphan human retinal rGC GUCY2D, previously shown to have basal activity (Duda et al., 1996; Shyjan et al., 1992), promotes AFD microvilli loss in wild-type animals (Figure 4C). However, expression of the human rGC NPR-1, which requires ANP peptide for activity, or the rGC scavenger receptor, NPR-3, lacking a cyclase domain, had negligible effects on AFD shape (Figure 4D).

To directly test whether GCY-8 has basal activity, we generated stably integrated HEK293T cell lines expressing wild-type or mutant versions of hNPR-1 or GCY-8 proteins and assayed them for steady-state cGMP levels (Figures 5A and 5B). We draw three important conclusions from these studies. First, while hNPR1 has essentially no basal activity, as previously reported, GCY-8-expressing cells show significant activity, as predicted by our genetic data. Second, consistent with our in vivo studies, GCY-8E1057A, which affects the conserved DFG motif in the KHD domain, enhances this basal cyclase activity, similar to or greater than an activating lesion previously described in other rGCS (GCY-8G707E). Third, the GCY-8G707E analogous mutation in hNPR1 (hNPR1G680E) also shows increased cyclase activity. Thus, GCY-8 has basal cyclase activity, and the glycine residue of the DFG motif is important for cyclase inhibition across rGCS.

GCY-8 Functions Downstream of KCl
As is the case for kcc-3 mutants, the effect of gcy-8(ns335) on AFD microvilli structure is largely independent of AFD neuron function, as tax-4 mutations fail to suppress gcy-8(ns335) AFD microvilli defects (Figure 3L). Importantly, dietary supplementation with KCl does not rescue gcy-8(ns335) NRE shape defects (Figure S4B).

Thus, rescue of kcc-3(ok228) NRE shape defects by exogenous KCl is not due to non-specific effects on neuron morphology. Furthermore, GCY-8 functions downstream of KCC-3 and KCl, as would be predicted for a KCC-3 effector.

GCY-8 Has a Ligand-Independent Basal Cyclase Activity Inhibited by the DFG Motif
Our finding that glial kcc-3 mutant defects can be overcome by inactivating GCY-8 in AFD neurons suggests that GCY-8 may inhibit GCY-8 through the action of K⁺ or Cl⁻. To test whether this effect is direct...
and which ion can inhibit GCY-8 activity, we performed reconstituted membrane fraction assays using the stably integrated HEK293T cell lines described above. As with the whole-cell assays, we found a 2.7-fold increase in cGMP production in GCY-8-containing fractions (Figure 5C). Strikingly, we found that Cl⁻ ions, but not K⁺ or other anions, are potent inhibitors of GCY-8 cyclase activity and cGMP production (Figures 5D and S5A), with an IC₅₀ of ~60 mM. This IC₅₀ is within the physiological range for extracellular Cl⁻ concentrations in many settings (Tora et al., 2015), suggesting that changes in extracellular Cl⁻ levels, as would be predicted to occur in kcc-3 mutants, should indeed affect GCY-8 activity. Consistent with these in vitro results, we found that exogenous supplementation with Cl⁻ mitigates the overexpression defects of GCY-8 in vivo (Figure 5E). Also, previous studies suggest that cGMP levels may be reduced at lower temperatures to allow CNG channels in AFD to close as part of the thermosensory response (Garrity et al., 2010). Thus, defects in inhibition of cGMP production by GCY-8 should be more pronounced at 15°C, which is exactly what we see in null kcc-3 mutants (Figure 1F). Taken together, our results support a model in which KCC-3 regulates extracellular Cl⁻ levels, which, in turn, directly influence GCY-8 guanylyl cyclase activity.

Cl⁻ Inhibits GCY-8 by Binding to a Functionally Conserved Cl⁻ Binding Motif in Its ECD

Crystal structures of the rat rG NPR1 reveal a Cl⁻ in the ECD domain within a pocket defined by the motif S(x₃)GPxC (van den Akker et al., 2000; Ogawa et al., 2010). A conserved S(x₃) GPxC motif is present in the ECD of GCY-8 (Figures S5B and S5C), but not in GCY-23, mutations in which suppress kcc-3 lesions only modestly (Figures 3B and S5C). The S(x₃)GPxC motif is structurally conserved in the ECD of metabotropic glutamate receptors (mGluRs), and Cl⁻ is an orthosteric ligand for mGluRs (DiRaddo et al., 2015; Tora et al., 2015). Of note, the IC₅₀ for Cl⁻ inhibition of GCY-8 is identical to the Cl⁻ EC₅₀ measured for mGluR2 activity, consistent with a possible role for the GCY-8 S(x₃)GPxC ECD motif in mediating the effects of Cl⁻.

Supporting this idea, exogenous in vivo supplementation with Cl⁻ salts does not suppress the overexpression defects of the HCAT fragment lacking the ECD, but suppresses defect of full-length GCY-8 overexpression (Figure 5E). Furthermore, mutating the conserved Cl⁻ binding domain serine of mGluRs to glutamate mimics the effects of Cl⁻ (Dutzler, 2003; Tora et al., 2015). We found that a similar mutation in GCY-8 (GCY-8S¹¹⁰E) inhibits the ability of GCY-8 to promote NRE involution in vivo (Figure 5F), suggesting that this motif may indeed be functionally conserved. To confirm this, we expressed GCY-8S¹¹⁰E in HEK293T cells and measured basal guanylyl cyclase activity in reconstituted membrane fractions. GCY-8S¹¹⁰E had reduced basal activity compared to GCY-8, as expected of a mutation that mimics binding of an inhibitory Cl⁻ ligand (Figure 5G). Furthermore, GCY-8S¹¹⁰E was insensitive to increasing levels of Cl⁻, unlike full-length GCY-8 (Figure 5H). By contrast, the GCY-8G⁷⁷⁰T²⁸⁰E- and GCY-8E¹⁰⁰₅⁷A-activated proteins that possess intact ECDs retain Cl⁻ inhibition, but with dampened efficacy compared to full-length GCY-8 (Figure 5H).

Changing the conserved cysteine of the S(x₃)GPxC motif to serine enhances Cl⁻ coordination in mGluRs by introducing a second hydroxyl moiety into the Cl⁻ binding pocket (Figures S5B and S5C) (Tora et al., 2015). We found that the same may be true for the S(x₃)GPxC motif of GCY-8, GCY-8C¹⁴¹S slightly reduces the ability of GCY-8 to prevent NRE extension in vivo (Figure 5F) and shows reduced basal activity compared to GCY-8 (Figure 5G) and reduced Cl⁻ sensitivity in vitro (Figure 5H).

Taken together, these results suggest that Cl⁻ ions directly inhibit GCY-8 activity by binding to the conserved S(x₃)GPxC motif in the extracellular domain of GCY-8.

Excess cGMP Blocks AFD NRE Growth

Our studies suggest the hypothesis that increased cGMP production by GCY-8 promotes AFD NRE disappearance. To examine the involvement of cGMP in AFD NRE shape control, we reasoned that GCY-8-independent manipulations that alter cGMP levels within AFD should also alter microvilli morphology. Therefore, we expressed cyclase-activated forms of human NPR-1 (hNPR-1E¹⁰⁰₆A) and human GUCY2D (hGUCY2D E¹⁰¹₀A, a retinal rG) in the AFD neuron (Wedel et al., 1997). As shown in Figure 4C, transgenic animals display defects in microvilli extension, suggesting that excess cGMP produced by these heterologous guanylyl cyclases indeed blocks AFD NRE growth. Similarly, the hGUCY2D protein containing a lesion homologous to the GCY-8G⁷⁷⁰E lesion (hGUCY2D G⁷⁷⁰E) also significantly shortens AFD receptive ending microvilli (Figure 4C).

As an alternate means of modulating cGMP levels, we examined the consequences of changing the activities of phosphodiesterase (PDE) genes, encoding proteins that degrade cGMP, on AFD receptive ending morphology. C. elegans has four such genes (pde-1, pde-2, pde-3, and pde-5) (Liu et al., 2010), two of which (pde-2 and pde-5) are known to be expressed in AFD (Wang et al., 2013). While a pde-1 gene reporter containing limited 5' regulatory sequences fused to GFP was not previously detected in AFD (Wang et al., 2013), we found that a fosmid derived from genomic DNA surrounding the locus and recombined to introduce GFP coding sequences just upstream of the pde-1 stop codon is expressed in the cell (Figure 5C). Thus, at least three PDEs are expressed in AFD.

A quadruple mutant inactivating all cGMP PDE genes showed complete loss of AFD microvilli (Figure 6A). A pde-5 pde-1 double mutant also displayed a fully penetrant loss of AFD receptive endings (Figure 6A). Single, double, or triple combinations of mutations in the other cGMP PDE genes or in the cAMP-specific PDE gene, pde-4, had no effect on AFD receptive ending shape (Figure 6A). Thus, PDE-1 and PDE-5 are the only PDEs required for AFD microvilli extension and appear to function redundantly. We conclude that PDE-1 and PDE-5 likely act cell autonomously in the AFD neuron to regulate receptive ending shape and that excess cGMP blocks microvilli extension.

To test whether increasing PDE activity reciprocally promotes AFD microvilli elongation, we examined pde-5 pde-1 double mutants expressing a cDNA derived from the pde-1B mRNA isoform specifically in AFD (Figure S6B). This transgene strongly rescues the AFD defects of the double mutant (Figure 6A), supporting the idea that PDE-1 and PDE-5 exercise interchangeable cell-autonomous activities required for AFD morphogenesis. Furthermore, PDE-1B overexpression restores AFD NRE microvilli to kcc-3(ok228) and gcy-8(ns335) mutants, consistent with the
idea that high cGMP levels block microvilli elongation in these mutants (Figure 6A). Importantly, we noticed that in some animals overexpressing PDE-1B, microvilli are longer than in wild-type and are sometimes misshapen (Figures 6A, gray bars; Figures S6 D and S6E). Our results suggest, therefore, that cGMP levels are sufficient to dictate the extent of microvilli elongation.

cGMP Antagonizes the Actin Regulator WSP-1 to Control AFD Receptive Ending Shape

Since the effects of cGMP on AFD NRE shape are largely independent of CNG channels, we sought to identify a relevant mediator for shape determination. From a screen of candidate effectors, we found that overexpression in otherwise wild-type AFD neurons of a cDNA corresponding to the gene wsp-1, encoding the well-studied actin regulator NWASP, results in elongated AFD microvilli (Figures 6B, S7A, and S7B), suggesting that WSP-1 promotes microvilli formation. Strikingly, WSP-1 overexpression restores microvilli to gcy-8(ns335) mutants (Figure 6B). A similar result is obtained using a genomic clone carrying the wsp-1 gene (Figure 6B). These observations suggest that high cGMP inhibits microvilli growth by antagonizing WSP-1. Supporting the idea that WSP-1 is normally required for AFD NRE growth, wsp-1(gm324) mutants homozygous for a loss-of-function mutation perturbing the wsp-1A mRNA isoform are defective in AFD microvilli elongation. Moreover, wsp-1(gm324) animals also show defects in thermotaxis behavior at all temperatures and ages tested (Figures 6D–6F). Another allele, wsp-1(gk208630), which only affects the wsp-1B isoform, does not affect AFD NREs (Figures S7 C and S7D).

We note that wild-type animals overexpressing WSP-1A occasionally display shorter microvilli (Figure 6B). One explanation for this may be that high levels of WSP-1 target-free actin to new filament ends, preventing elongation of existing filaments (Smith et al., 2013a). Consistent with this hypothesis, double mutants between gcy-8(tm949) and gcy-18(ok797) null alleles show a modest reduction in microvilli length, as do some animals overexpressing PDE-1B (Figures 6A and 6C).

The finding that wsp-1(gm324) animals exhibit a weaker NRE defect than do gcy-8(ns335) mutants suggests that a second actin-polymerizing factor also functions downstream of cGMP. Importantly, however, the ability of WSP-1 overexpression alone to promote AFD microvilli elongation in wild-type animals and rescue the defects of gcy-8(ns335) demonstrates that actin nucleation in AFD actin-rich microvilli is likely the key step being regulated by the glia-neuron interactions we uncovered. We therefore conclude that cGMP antagonizes WSP-1 activity,

![Figure 6](https://www.cell.com/content/165/6/936.full.pdf)
WSP-1 independent of neuronal activity. Control cGMP levels, which antagonizes the actin cytoskeleton through GCY-8 by binding the S(x)nGPxC motif in its ECD. GCY-8, PDE-1, and PDE-5 in the extracellular milieu around AFD receptive ending. Chloride inhibits microenvironment. Our findings support a model (Figure 7) in revealing that glia can dictate NRE shape by controlling the NRE microenvironment.

which likely regulates nucleation of actin filaments in AFD NREs. These results also imply that, unexpectedly, we have found that cGMP regulates at least two independent effectors—CNG channels and WSP-1, with different functions in the AFD neuron, and WSP-1 is the key downstream effector for regulation of AFD NRE shape.

DISCUSSION

Our studies identify a glial regulator of sensory NRE shape and reveal that glia can dictate NRE shape by controlling the NRE microenvironment. Our findings support a model (Figure 7) in which the glial K/Cl transporter KCC-3 localizes around and controls Cl⁻ levels surrounding AFD microvilli. Cl⁻ inhibits the AFD-specific rGC GCY-8, which has a conserved Cl⁻ binding structural motif. GCY-8, along with PDE-1 and PDE-5, modulate neuron cGMP levels, and cGMP antagonizes WSP-1, which promotes NRE elongation, presumably through actin nucleation. Importantly, our studies reveal that glia continuously maintain AFD NRE shape, presumably by regulation of the microenvironment.

Glia Discriminate among NREs

Our findings that KCC-3 localizes around AFD NREs and is selectively required for their function demonstrate that a single glial cell discriminates between neurons, with which it associates by targeting regulators to specific neuron-contact sites. Mammalian astrocytes can associate with ∼100,000 NREs (Chung et al., 2015), and Ca²⁺ fluxes in astrocytes have localized features (Khakh and Sofroniew, 2015). We suggest that the ability to discriminate between associated neurons may be a universal property of glia. Understanding how KCC-3 localization is achieved may provide a molecular handle on targeted control of neurons by glia.

Glia Control Sensory and Synaptic NRE Shape and Function

How actin-based microvilli NREs are formed and maintained is poorly understood. Our results will likely apply to many such sensory structures. Indeed, glia/glial-like cells regulate the ionic milieu of diverse actin-based sensory NREs, and human disease mutations affect these cells (Estrada-Cuzcano et al., 2012; Hamel, 2007). KCC and NKCC co-transporters are expressed in glia of the ear, retina, and in Schwann cells (Boettger et al., 2002; Kettenmann and Verkhratsky, 2008), and their disruption can lead to NRE degeneration (Gallemore et al., 1997; Strauss, 2005). KCC3 loss in humans leads to sensory neuropathy (Kahle et al., 2015).

rGCs are also widely expressed in sensory and other neuron types, and retinal GUCY2D and Grueneberg ganglion GC-G have basal guanylyl cyclase activities similar to GCY-8 (Chao et al., 2015; Shyjan et al., 1992). Increased GUCY2D activity leads to defects in photoreceptor outer segment shape in Leber’s congenital amaurosis with some patient mutations mapping to the ECD (Perrault et al., 2000). These effects are reminiscent of the effects of GCY-8G707E on AFD NREs.

Our work may also present a paradigm for understanding glial effects on spine morphology in the CNS. Astrocytic KCC channels regulate K/Cl levels in the CNS (Kettenmann and Verkhratsky, 2008). Disruption of K/Cl levels contributes to neuronal dysfunction in Huntington’s disease and epilepsy models (Kahle et al., 2015; Tong et al., 2014) and to defects in spine shape (Murmu et al., 2015).

AMsh glia form a bounded compartment around AFD NREs, allowing, as in synapses, tight control of the NRE milieu. A role for extracellular Cl⁻ in modulating spine-localized metabolotropic glutamate receptors has been explored (Tora et al., 2015). Our studies suggest that in addition to providing a diffusion barrier, glia may actively control synaptic Cl⁻ levels to modulate spine activity and shape. Supporting this proposition, mGlus (class III GPCRs) and rGCs adopt a Leu/IsoLeu/Val binding periplasmic protein-like (LIVBP) fold in the extracellular domain (Acher et al., 2011). The S(x)nGPxC Cl⁻ binding motif is conserved across nervous system LIVBP fold receptors (Acher et al., 2011).

Glia Control of Thermosensation

Electrophysiological studies of AFD neurons suggest that high/low cGMP opens/closes CNG channels upon warming/cooling (Garrity et al., 2010; Ramot et al., 2008), relative to the cultivation temperature. Thus, within the operating range of the thermosensory apparatus, a basal level of cGMP must exist that can be modulated up or down. That GCY-8 has basal activity supports this idea, as does our observation that kcc-3 mutants exhibit more pronounced thermosensory deficits at low temperature, where higher GCY-8 inhibition may be required.

We have previously shown that expression of the VER-1 receptor tyrosine kinase in AMsh glia is temperature dependent and independent of the AFD neuron (Procko et al., 2011). It is possible that modulation of AMsh glia-dependent properties,
such as KCC-3 activity, by temperature may also form part of the thermosensory apparatus.

Control of rGC Activity

rGCs are prevalent receptors and are important therapeutic targets (Potter, 2011). Our data highlight unexpected aspects of rGC structure and function. That neuronal rGCs (e.g., GCY-8 and GUCY2D) have basal activities, but non-neuronal rGCs (e.g., NPR-1 and NPR-2) do not, suggests the possibility of a fundamental dichotomy. The identification of Cl⁻ as a GCY-8 inhibitor raises the possibility that rGCs with basal activity, for which activating ligands have not been identified, may instead be regulated by inhibitory extracellular cues. Our results suggest that the relationship between the ECD and KHD may be inverted in rGCs with basal activity versus ligand-activated non-neuronal rGCs.

That Cl⁻ ions influence GCY-8 activity also suggests that other ions may control rGCs. A recent study exploring rGCs in K⁺ and I⁻ sensation in *C. elegans* revealed that stimulus specificity tracks with receptors ECDs (Smith et al., 2013b). Thus, rGCs may sense different ions through their ECD.

Finally, we show that a conserved glycine residue in the KHD has inhibitory roles in GCY-8 and also in human NPR1. The D(F/H/Y)G motif containing this amino acid is conserved in all kinases and pseudo-kinases and forms part of the activation loop. Thus, this domain may facilitate ATP binding, previously suggested to affect rGC activity (Goraczniak et al., 1992).

EXPERIMENTAL PROCEDURES

C. elegans Methods

Standard culturing and germ-line transformation methods were used (Brenner, 1974; Mello and Fire, 1995). Mutants, transgenes, genetic methods, RNAi methods, and thermotaxis assays are described in the Supplemental Experimental Procedures.

Plasmids

Plasmid construction details are provided in the Supplemental Experimental Procedures.

Microscopy and Image Processing

Images were collected on an Axioplan 2 microscope (Zeiss) with 63x/1.4 na objective (Zeiss) and dual-band filter set (Chroma, set 51019). Some images were collected on a DeltaVision Core imaging system (Applied Precision) with a PlanApo 603/1.42 na or UPLSapo 1003/1.40 na oil-immersion objective and a Photometrics CoolSnap HQ camera (Roper Scientific). Images were deconvolved using ImageJ. Electron microscopy methods are described in the Supplemental Experimental Procedures.

cGMP ELISAs

ELISAs were performed using the Direct cGMP Kit (Enzo Life Sciences, ADI-900-014). Cells (5 × 10⁶) were grown on poly-D-lysine-coated plates (Corning BioCoat, 354414) for 12 hr, rinsed in D-PBS, and incubated in serum-free medium, supplemented with 0.5 mM IBMX, at 23°C or 37°C with 5% CO₂ for 1 hr. Cells were lysed in 0.1 M HCl + 0.1% Triton X-100 and assayed for cGMP concentration as per the manufacturer’s protocol (*Enzo Life Sciences*) (Guo et al., 2007, 2009). Optical density measurements were performed on a BioTek Synergy NEO using the Gen5 data analysis software. All GGY-8 experiments were performed in biological quadruplicate and NPR-1 experiments in biological triplicate. Importantly, the assay measures steady-state accumulation of cGMP (production minus degradation) and is always an underestimate of cGMP production.

Membrane assays were carried out as follows: cells were cultured in growth medium to ~95% confluency and washed in 50 mM NH₄Ac and 200 mM sucrose (pH 7) (plus 1 mM IBMX and protease inhibitors). Cells were passed through a 26-gauge needle several times and sonicated for 10 s. After centrifugation at 2,000 rpm for 5 min, the membrane fraction was prepared by centrifugation at 100,000 × g for 1.5 hr at 4°C. The membrane pellet was resuspended in 50 mM NH₄Ac, 200 mM sucrose (pH 7), 1 mM DTT, 10 mM MgAc₂, and 1 mM MnSO₄. Membrane preparations were treated with KC, KAc, or NH₄Cl. GTP (5 mM) was added to start the cyclase reaction. After 30 min at 30°C, membrane preparations were lysed in 0.2 M HCl and assayed for cGMP.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, seven figures, and four movies and can be found with this article online at http://dx.doi.org/10.1016/j.cell.2016.03.026.

AUTHOR CONTRIBUTIONS

A.S. and S.S. designed the experiments and wrote the manuscript. A.S. performed all experiments and analyses, except for electron microscopy, which was performed by Y.L., and membrane fraction cGMP assays, which was performed by B.L. and X.-Y.H. C.J.F. and J.F. assisted A.S. in construct cloning.

ACKNOWLEDGMENTS

We thank Cori Bargmann, Menachem Katz, Michael Koelle, and Piali Sengupta for reagents, Tarakovsky lab members for help with cell culture, and Cori Bargmann and the S.S. lab for comments. William J. Rice at the Simons Electron Microscopy Center (NVSCB) helped with FIB/SEM imaging. A.S. was an American Cancer Society postdoctoral fellow (PF-13-083-01-DDC), NIH-T32 institutional postdoctoral fellow (T32CA967334), and Murray Foundation fellow. This work was supported in part by grants from the NIH (NS081490 and HD078703) to S.S.

Received: July 15, 2015
Revised: December 4, 2015
Accepted: March 15, 2016
Published: April 7, 2016

REFERENCES

Figure S1. Cilia or Downstream Circuit Genes Do Not Affect AFD Microvilli Shape, Related to Figure 1
(A and B) Histogram details are as in Figure 1B.
Figure S2. Glial Exocytosis Regulates AWC Independent of KCC-3, Related to Figure 1
(A) Histogram details as in Figure 1B.
(B) Thermotaxis behavior assays on 24 hr post mid-L4 stage animals raised at 25°C summarized as detailed in Figure 1G.
(C and D) Fluorescence images of AWC cilium in wild-type (C) and kcc-3(ok228) mutant animals (D).
Figure S3. rGC Gene Mutations and Predicted Protein Structures, Related to Figure 3

(A–C) In each box, top panel denotes the gene structure, and lower panels denote the putative domain structure for wild-type or predicted mutant proteins as noted. Gray bars are exons in top panel of each section, white bars are UTR sequences.
Figure S4. GCY-8 Is Expressed at AFD Microvilli and Functions Downstream of KCI, Related to Figure 3

(A) GCY-8 localization to AFD microvilli receptive endings. Arrow, AFD microvilli (zoomed inset). Arrowhead, dendrite.

(B) Histogram details as in Figure 1B.
Figure S5. Cl−, but Not K+, Inhibits GCY-8 Activity, Related to Figure 5
(A) As in Figure 5D except that the y axis denotes % activity over GCY-8, instead of inhibition. x axis is plotted on a log\textsubscript{10} scale.
(B) Halide ion, shown with a mesh shell, within the conserved Cl− binding structural motif. Ligand explorer rendering of PDB structure 3A3K of rat NPR1 (Ogawa et al., 2010). Hydrogen bonds are dashed pink lines. Corresponding amino acids in GCY-8 are listed in parentheses. Hydrogen bond from a C141S mutation is modeled in dashed yellow line.
(C) Alignment of rGCs highlighting the conserved structural motif (colored amino acids) for Cl− binding. Amino acids underlined are labeled in (B).
Figure S6. Some pde Alleles Do Not Affect AFD Shape, Related to Figure 6

(A) Histogram details as in Figure 1B.
(B) Detail as in Figure S3.
(C) Fluorescence image depicting expression of PDE-1 in AFD (dotted line).
(D and E) Fluorescence images of wild-type and elongated microvilli, respectively, in animals overexpressing PDE-1B. Yellow dots, wild-type AFD extent. Red dots, elongated portion. Scale bar, 5 μm.
Figure S7. WSP-1 Overexpression Causes Elongated AFD Microvilli, Related to Figure 6

(A and B) Fluorescence micrographs of long AFD microvilli in WSP-1A transgenic animals. Scale bar, 5 μm. Yellow dotted line, typical length of wild-type AFD microvilli. Red, additional length. White arrow, dendrite. Arrowheads, longer microvilli.

(C) Histogram as in Figure 1B.

(D) Details as in Figure S3.
Supplemental Information

A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC

Aakanksha Singhvi, Bingqian Liu, Christine J. Friedman, Jennifer Fong, Yun Lu, Xin-Yun Huang, and Shai Shaham
Supplemental Materials for:

A Glial K/Cl Transporter Controls Neuronal Receptive-Ending Shape by Chloride Inhibition of an rGC

Aakanksha Singhvi1, Bingqian Liu2, Christine J. Friedman1,3, Jennifer Fong1,4, Yun Lu1, Xin-Yun Huang2, and Shai Shaham1,*

1Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA

2Department of Physiology, Cornell University Weill Medical College, 1300 York Avenue, New York, NY 10065 USA

3Current address: St. George’s University School of Medicine, Grenada, West Indies

4Current address: SUNY Downstate Medical Center College of Medicine, 450 Clarkson Ave, Brooklyn, NY 11203

*To whom correspondence should be addressed: Tel (212) 327-7126, Fax (212) 327-7129, email shaham@rockefeller.edu

Document contains:

- Supplemental Methods
- Supplemental References
SUPPLEMENTAL EXPERIMENTAL PROCEDURES

C. elegans methods

C. elegans were cultured as previously described (Brenner, 1974; Stiernagle, 2006). Bristol N2 strain was used as wild type. For all experiments, animals were raised at 20°C (or alternate temperatures where noted) for at least two generations without starvation. Animals were picked as L4 larvae onto fresh plates and assayed 24 hours later, unless otherwise noted. Integration of extra-chromosomal arrays was performed using UV with or without trioxalen (Sigma, T6137). Germline transformations by micro-injection to generate unstable extra-chromosomal array transgenes were carried out using standard protocols (Mello and Fire, 1995). For dietary supplementation with salts, sterile 3M solutions of KCl, NaCl or K-acetate were added to a final concentration of 150mM on plates. Plates were equilibrated for 48 hours before use.

Mutagenesis and mapping of genetic lesions

nsIs228 (P{srtx-1}:GFP) animals were mutagenized with 75 mM ethylmethanesulfonate (EMS, Sigma M0880) for 4 hours at 20°C. 10,800 F2 progeny were screened for AFD NRE morphology defects on an Axioplan 2 fluorescence microscope (Zeiss) with a 63x/1.4 NA objective (Zeiss) and dual-band filter set (Chroma, Set 51019). gcy-8(ns335) mapped to a 0.44 cM interval by Hawaiian SNIP-SNP mapping (Wicks et al., 2001). This interval was refined to 0.13 cM by deficiency mapping and the gene was identified by fosmid rescue and candidate gene analyses.
Strains and plasmids

Some strains listed below in Sections A and B were sourced from (a) the CGC, funded by NIH Office of Research Infrastructure Programs (P40 OD010440), (b) the International C. elegans Gene Knockout Consortium (C. elegans Gene Knockout Facility at the Oklahoma Medical Research Foundation, funded by the National Institutes of Health; and the C. elegans Reverse Genetics Core Facility at the University of British Columbia, funded by the Canadian Institute for Health Research, Genome Canada, Genome BC, the Michael Smith Foundation, and the National Institutes of Health) and (c) National BioResource Project (NBRP), Japan. Recombineered fosmids were obtained from The C. elegans TransgeneOme Project.

A. Mutants

LG1: pde-1 (nj57), pde-5 (nj49), arl-13(gk513)

LG2: kcc-3(ok228), kcc-3(tm3649), pde-3 (nj59), pde-4(ok1290)

LG3: tax-4(p768), pde-2(tm3098)

LG4: gcy-8(tm949), gcy-8(ns335), gcy-18(nj38), gcy-23(ok797), cng-3(jh113), wsp-1(gm324), wsp-1(gk206830), egl-4(n478), egl-4(ad450), bbs-2(gk544)

LG5: osm-6(p811), ttx-1(p767),

LGX: dyf-11(mn392), ttx-3(mg158)

B. Integrated transgenes

nsIs228 was the control strain for all non-transgenic animals.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Chromosome</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>nsIs228</td>
<td>I</td>
<td>P_{srxx-1}:GFP</td>
<td>(Colosimo et al., 2004). Extra-</td>
</tr>
</tbody>
</table>
A chromosomal array from Piali Sengupta’s lab was integrated in this study.

<table>
<thead>
<tr>
<th>nsls143</th>
<th>X</th>
<th>pF16F9.3::DsRed</th>
<th>(Procko et al., 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nsls373</td>
<td>X</td>
<td>P_{srtx-1}:GFP</td>
<td>AFD specific. Generated in this study by promoter bashing P_{srtx-1}</td>
</tr>
<tr>
<td>kyls136</td>
<td>X</td>
<td>P_{str-2}:GFP</td>
<td>(Troemel et al., 1999)</td>
</tr>
<tr>
<td>oyls44</td>
<td>V</td>
<td>odr-1::RFP</td>
<td>(L’Etoile and Bargmann, 2000)</td>
</tr>
<tr>
<td>nsIs109 and nsIs113</td>
<td></td>
<td>pF16F9.3::DT-A(G53E)</td>
<td>(Bacaj et al., 2008)</td>
</tr>
</tbody>
</table>

C. Extra-chromosomal transgenes and plasmids generated in this study

All transgenic arrays were generated with \(P_{elt-2}:mCherry \) (Armenti et al., 2014) as co-injection marker with three exceptions. \(pde-1 \) and \(kcc-3 \) fosmids had \(P_{mig-24}:Venus \) ((Abraham et al., 2007) as co-injection marker; \(nsIs228 \) and \(nsIs373 \) had \(P_{unc-122}:RFP \) (Miyabayashi et al., 1999) as marker and \(P_{ver-1}:rab-1 \) constructs had \(pRF4 \) (Gu et al., 1998) as co-injection marker. All transgenes are injected at 50 ng/ul unless otherwise noted.

<table>
<thead>
<tr>
<th>Extra-chromosomal array (nsEx) number</th>
<th>Plasmid</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>3936, 3937, 3938, 3939</td>
<td>pAS300</td>
<td>(Psrtx-1B:GFP)</td>
</tr>
<tr>
<td>4236, 4260, 4381</td>
<td>pAS406</td>
<td>(Psrtx-1B:mCherry)</td>
</tr>
<tr>
<td>Line No.</td>
<td>Name</td>
<td>Transgene</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>3944, 3945, 3946, 3947</td>
<td>pAS178</td>
<td>Psrtx-1:SL2:GFP</td>
</tr>
<tr>
<td>3565, 3566</td>
<td>WRM0629cG03</td>
<td>Pgcy-8:gcy-8 (10 ng/ul)</td>
</tr>
<tr>
<td>3976, 4015, 3977</td>
<td>pAS185</td>
<td>Psrtx-1:GCY-8:SL2:GFP</td>
</tr>
<tr>
<td>3973, 3966, 3974</td>
<td>pAS306</td>
<td>Psrtx-1:GCY-8(E974A):SL2:GFP</td>
</tr>
<tr>
<td>4189, 4190, 4194, 4162, 4311</td>
<td>pAS400</td>
<td>Psrtx-1:GCY-8(D976A):SL2:GFP</td>
</tr>
<tr>
<td>5634, 5635, 5636, 5637</td>
<td>pAS257</td>
<td>Psrtx1:GCY-8(S110A):SL2:GFP</td>
</tr>
<tr>
<td>5638, 5639, 5640, 5641</td>
<td>pAS260</td>
<td>Psrtx1:GCY-8(S110E):SL2:GFP</td>
</tr>
<tr>
<td>4080, 4063, 4064, 4076</td>
<td>pAS330</td>
<td>Psrtx-1:GCY-8 (HCAT):SL2:GFP</td>
</tr>
<tr>
<td>4164, 4165, 4166</td>
<td>pAS351</td>
<td>Psrtx-1:GCY-8(KHD):SL2:GFP</td>
</tr>
<tr>
<td>4163, 4496, 4497, 4506, 4498</td>
<td>pAS353</td>
<td>Psrtx-1:GCY-8(KHD+HCAT):SL2:GFP</td>
</tr>
<tr>
<td>4442, 4443, 4444, 4574</td>
<td>pAS430</td>
<td>Psrtx-1B:GCY-8(TM+KHD+HCAT):SL2:GFP</td>
</tr>
<tr>
<td>4040, 4041, 4042, 4043</td>
<td>pAS316</td>
<td>Psrtx-1:hNPR1:SL2:GFP</td>
</tr>
<tr>
<td>4037, 4038, 4039</td>
<td>pAS314</td>
<td>Psrtx-1:hNPR3:SL2:GFP</td>
</tr>
<tr>
<td>4195, 4188, 4191, 4192</td>
<td>pAS404</td>
<td>Psrtx-1:hGUCY2D:SL2:GFP</td>
</tr>
<tr>
<td>4605, 4617, 4580, 4606</td>
<td>pAS457</td>
<td>Psrtx-1:hNPR1(E1006A):SL2:GFP</td>
</tr>
<tr>
<td>4621, 4622, 4623</td>
<td>pAS467</td>
<td>Psrtx-1:hGUCY2D(E1010A):SL2:GFP</td>
</tr>
<tr>
<td>5062, 5063, 5613, 5614</td>
<td>pAS506</td>
<td>Psrtx1:GUCY2D(G686E):SL2:GFP</td>
</tr>
<tr>
<td>4607, 4646, 4624</td>
<td>pAS468</td>
<td>Psrtx-1:PDE1B:SL2:GFP</td>
</tr>
<tr>
<td>4730, 4804, 4767</td>
<td>Recombineered</td>
<td>Ppde-1:PDE-1:GFP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3282, 3283, 3297</td>
<td>fosmid</td>
<td>WRM0636cF12</td>
</tr>
<tr>
<td>4842, 4843, 4853, 4854</td>
<td>pAS245</td>
<td>Psrtx-1:WSP-1A:SL2:GFP</td>
</tr>
<tr>
<td>2680, 2655, 2769, 2770</td>
<td>pAS125</td>
<td>Pver-1:RAB-1(S25N)</td>
</tr>
<tr>
<td>4809, 4838, 4839, 4810</td>
<td>pMK179.1</td>
<td>Pkcc-3:KCC-3 + pF53F4.13:mCherry</td>
</tr>
<tr>
<td>LX1161</td>
<td>pJT68A</td>
<td>Pkcc-3:gfp</td>
</tr>
<tr>
<td>4995, 4996, 4997</td>
<td>Recombineered fosmid</td>
<td>Pkcc-3-1:KCC-3:GFP</td>
</tr>
<tr>
<td>5615, 5616, 5617, 5618</td>
<td>pAS250</td>
<td>pF53F4.13:KCC-3 cDNA:SL2:mCherry (1 ng/ul)</td>
</tr>
<tr>
<td>5650, 5651, 5652</td>
<td>pAS265</td>
<td>pF53F4.13:KCC-3 cDNA:mCherry (1 ng/ul)</td>
</tr>
<tr>
<td>n.a.</td>
<td>pAS214</td>
<td>pCMV:FLAG:GCY-8</td>
</tr>
<tr>
<td>n.a.</td>
<td>pAS221</td>
<td>pCMV:FLAG:GCY-8(G707E)</td>
</tr>
<tr>
<td>n.a.</td>
<td>pAS227</td>
<td>pCMV:FLAG:GCY-8(E1057A)</td>
</tr>
<tr>
<td>n.a.</td>
<td>pAS222</td>
<td>pCMV:FLAG:hNPR-1</td>
</tr>
<tr>
<td>n.a.</td>
<td>pAS501</td>
<td>pCMV:FLAG:hNPR-1(G680E)</td>
</tr>
<tr>
<td>n.a.</td>
<td>pAS265</td>
<td>pCMV:FLAG:GCY-8(S110E)</td>
</tr>
<tr>
<td>n.a.</td>
<td>pAS270</td>
<td>pCMV:FLAG:GCY-8(C141S)</td>
</tr>
</tbody>
</table>

Plasmids
GCY-8 PLASMIDS: cDNA for gcy-8 was PCR amplified from a mixed stage cDNA library in two segments using an internal Hind3 segment and cloned into pAS178 by triple ligation using Xma1/Nhe1 sites flanking either end. This generated the pAS185 plasmid, which was used as template for all subsequent domain manipulations. gcy-8:gfp fusion plasmids were made by triple ligation of appropriately modified pAS185 fragments to enable in frame translation with gfp. Mutations were introduced by site directed mutagenesis in the appropriate fragment and triple ligating with the appropriate fragment and vector.

HUMAN rGC PLASMIDS: Human NPR1 (BC063304.1), NPR-3 (BC131540.1) and GUCY2D (BC148421.1) were obtained from the mammalian gene collection through GE Dharmacon/Thermo Fisher. Each cDNA was cloned into pAS178 by simple or triple ligation and this was used as template for all subsequent cloning. Mutations were introduced by site directed mutagenesis in the appropriate fragment and triple ligating with the appropriate fragment and vector.

PDE-1B PLASMID: The pde-1B isoform was PCR amplified from a mixed stage cDNA library and ligated into pAS178 using Xma-1/Nhe-1 flanking sites.

WSP-1A PLASMID: The wsp-1a isoform was PCR amplified from pGO101 (gift from Grigorios Oikinomou, SS lab) and ligated into pAS465 or pAS178 using Xma-1/Sal-1 flanking sites.

KCC-3 PLASMIDS: The kcc-3 expression construct including the 5’ and 3’ UTR sequences fused in frame to GFP were a gift from Jessica Tanis, Michael Koelle lab. P_kcc-3::kcc-3 was constructed by amplifying the coding sequence of kcc-3 and inserting it in frame with
the UTR sequences of pJT68A. The first seven of the fifteen introns in this gene were included in this construct. pAS250, 255 and 265 were generated by amplifying the KCC-3 cDNA from a mixed stage C. elegans cDNA library and inserting into pAS465, pSGEM or pAS512 respectively using BamH1/Sal1 flanking sites. For pAS265, a single nucleotide deletion of the stop codon was done by site directed mutagenesis to put the cDNA in frame with mCherry. The sequence of the cDNA we isolate suggests that 87 nucleotides of the annotated intron 8 on WormBase are in fact coding sequence. This adds 29 amino acids of a stretch of conserved residues, including a Cys conserved in all KCC, but not NKCC genes across species (data not shown and Figure 1E). This finding is consistent with KCC-3 being a member of the SLC12A4/KCC family.

FLAG:rGC PLASMIDS: All constructs to generate N-terminal FLAG tagged protein were made by amplifying cDNA sequences in two fragments with appropriate flanking restriction enzyme sites and triple ligating into the pFLAG:CMV vector (Sigma E6783). Mutant proteins were generated by subsequent site-directed mutagenesis of wild type rGC cDNA inserts.

Electron microscopy

For transmission EM, animals were prepared and sectioned using standard methods (Lundquist et al., 2001). Imaging was performed with an FEI Tecnai G2 Spirit BioTwin transmission electron microscope equipped with a Gatan 4K · 4K digital camera. Focused ion beam scanning EM (FIB-SEM) was performed at the NY Structural Biology Center. A modified high-contrast en bloc staining OTO method (Seligman et al., 1966) was applied
Singhvi et al.

to the FIB-SEM specimen preparation. Sodium thio-carbohydrazide (TCH) was used to bind the primary osmium stain. Then the en-block stain was enhanced by a second round of osmium fixation. Glutaraldehyde (1%) was added to provide effective protein crosslinking in tissues. The serial sections prior to the region-of-interest were searched and confirmed by TEM imaging before the critical portion of the specimen had been reached. The samples for SEM were mounted on a stub of metal with silver adhesive, coated with 40-60 nm of Palladium using a Denton vacuum sputter coater. The image collection was performed by a Dual beam FEI Helios 650 Focused Ion Beam Scanning Electron Microscope (FIB-SEM) with a CCD camera with field of view of 4096 x 3536 pixels. Serial backscattered scanning electron micrographs were collected from the specimen surface after each 30 nm layer had been milled away. Beam voltage was 2keV and beam current was 0.4nA. Accurate image registration was achieved by applying a scale-invariant features algorithm (Lowe, 1999) to the raw image stacks.

Cell culture

HEK293T cells were grown using standard procedures at 37°C and 5%CO₂ in DMEM-C [DMEM media (Gibco 11995-065) supplemented with 10% heat inactivated fetal bovine serum, L-Glutamine, MEM-NEAA and Penicillin/Streptomycin]. Transfections were performed using Lipofectamine 2000 (Invitrogen, 11668-027) as per manufacturer’s protocol. pCMV:GFP:Pac (Campeau et al., 2009) was used as a co-transfection reagent at 1:10 dilution for each test (i.e. pAS) plasmid. Puromycin efficacy was determined by serial dilution of antibiotic concentration and assaying viability of un-transfected
HEK293T cells at 24 and 48 hours. GFP positive transfected cells were selected for stable integrations and maintained in DMEM-C media supplemented with 4ug/ml puromycin (Sigma P9620). Expression of FLAG tagged constructs was verified by lysing cells in RIPA buffer (Sigma, R0278) and Western blotting equal amounts of total protein extract as quantified by Bradford assay (Bio Rad 500-0202). Detection was performed using anti-FLAG antibody (Sigma, F7425) and Clean-Blot IP detection kit (HRP) reagents (Thermo Scientific, 21232). Protein expression level of each construct was normalized to expression of hNPR-1 with alpha-tubulin as a loading control. Westerns were done in triplicate and averaged for normalization. Experiments were done at normal physiological temperature for each protein.

Thermotaxis behavior

Thermotaxis assays were performed on a 18°-26°C linear temperature gradient (Hedgecock and Russell, 1975; Mori and Ohshima, 1995). Animals were synchronized and the staged progeny were tested on the first day of adulthood. Briefly, animals were washed twice with S-Basal and spotted onto the center of a 10-cm plate warmed to room temperature and containing 12 mL of NGM agar. The plate was placed onto the temperature gradient (17-26°C) with the addition of 5 mL glycerol to its bottom to improve thermal conductivity. At the end of 45 mins, the plate was inverted over chloroform to kill the animals and allowing easy counting of animals in each bin. The plates have an imprinted 6x6 square pattern which formed the basis of the 6 temperature bins. Each data point is the average of 2-5 assays with ~150 worms/assay.
RNAi

Plasmids expressing double-stranded RNA (dsRNA) were obtained from the Ahringer library (Kamath et al., 2003). An empty vector was used as the negative control. RNAi was performed by plating L4 nsIs228; rrf-3(pk1426) animals onto RNAi bacteria and allowing them to feed (Timmons and Fire, 1998). 24 hours later, adults were moved to a fresh plate with RNAi bacteria and their progeny were assayed 3-5 days later for defects in AFD receptive ending shape.

Statistics

Statistical significances (p-values) were computed using the two-sample proportion Z test with normal approximation to the binomial at StatCrunch (www.statcrunch.com), except for Figure 5B where the unpaired two sample t-test was used.
SUPPLEMENTAL REFERENCES

