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Abstract Glia in the central nervous system engulf neuron fragments to remodel synapses and

recycle photoreceptor outer segments. Whether glia passively clear shed neuronal debris or

actively prune neuron fragments is unknown. How pruning of single-neuron endings impacts animal

behavior is also unclear. Here, we report our discovery of glia-directed neuron pruning in

Caenorhabditis elegans. Adult C. elegans AMsh glia engulf sensory endings of the AFD

thermosensory neuron by repurposing components of the conserved apoptotic corpse

phagocytosis machinery. The phosphatidylserine (PS) flippase TAT-1/ATP8A functions with glial PS-

receptor PSR-1/PSR and PAT-2/a-integrin to initiate engulfment. This activates glial CED-10/Rac1

GTPase through the ternary GEF complex of CED-2/CrkII, CED-5/DOCK180, CED-12/ELMO.

Execution of phagocytosis uses the actin-remodeler WSP-1/nWASp. This process dynamically tracks

AFD activity and is regulated by temperature, the AFD sensory input. Importantly, glial CED-10

levels regulate engulfment rates downstream of neuron activity, and engulfment-defective mutants

exhibit altered AFD-ending shape and thermosensory behavior. Our findings reveal a molecular

pathway underlying glia-dependent engulfment in a peripheral sense-organ and demonstrate that

glia actively engulf neuron fragments, with profound consequences on neuron shape and animal

sensory behavior.

Introduction
To interpret its environment accurately and respond with appropriate behaviors, an animal’s nervous

system needs to faithfully transmit information from the periphery and through neuron–neuron con-

tacts within the neural network. Precision in this information transfer and processing depends partly

on neuron-receptive endings (NREs), specialized subcellular structures where a neuron receives input

from either the external environment or other neurons (Bourne and Harris, 2008; Harms and

Dunaevsky, 2007; Shaham, 2010; Singhvi et al., 2016). In the peripheral nervous system (PNS),

sensory NREs house the sensory transduction machinery and appropriate NRE shape is important for

sensory information capture. In the central nervous system (CNS), the size and number of interneu-

ron NREs (dendritic spines) help determine the connectome and thereby the path of information
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transfer (Bargmann and Marder, 2013; Eroglu and Barres, 2010; Nimchinsky et al., 2002). While

remodeling of NRE shape has been suggested to be important for experiential learning and memory

(Bourne and Harris, 2008; Harms and Dunaevsky, 2007), directly correlating these subcellular

changes with animal behavior has been challenging.

Glia are a major cell type of the nervous system and approximate neurons in number

(von Bartheld et al., 2016). They have been proposed to actively modulate development, homeo-

stasis, and remodeling of neural circuits, and are thought to influence NRE shape and numbers

(Allen and Eroglu, 2017; Stogsdill and Eroglu, 2017; Zuchero and Barres, 2015). One mechanism

by which glia may do so is by engulfment of neuron fragments, including NREs (Freeman, 2015;

Schafer and Stevens, 2013; Wilton et al., 2019). Aberrant neuron fragment uptake by glia is impli-

cated in neurodevelopmental as well as neurodegenerative diseases, including Alzheimer’s demen-

tia, autism, and epilepsy (Chung et al., 2015; Henstridge et al., 2019; Neniskyte and Gross, 2017;

Schafer and Stevens, 2013; Vilalta and Brown, 2018; Wilton et al., 2019).

Fundamental questions about the roles and mechanisms of glia-dependent phagocytosis remain

open. Whether glia initiate engulfment or passively respond to neuron shedding is unclear. Further-

more, correlating glia-dependent remodeling at single synapse or NREs with changes in animal

behavior remains challenging in most systems (Koeppen et al., 2018; Wang et al., 2020). Also, glial

engulfment mechanisms have been primarily dissected in the context of injury or development, and

their impact on adult neural functions remains less understood. Finally, whether glia-dependent

engulfment occurs in the peripheral nervous system (PNS) or dictates normal sensory functions has

not been extensively explored.

The nervous system of the adult Caenorhabditis elegans hermaphrodite comprises 302 neurons

and 56 glial cells (Singhvi and Shaham, 2019; Sulston et al., 1983; White et al., 1986). These arise

from invariant developmental lineages, form invariant glia–neuron contacts, and each neuron per-

forms defined functions to enable specific animal behaviors. These features allow single-cell and

molecular analyses of individual glia–neuron interactions with exquisite precision (Singhvi et al.,

2016; Singhvi and Shaham, 2019).

eLife digest Neurons are tree-shaped cells that receive information through endings connected

to neighbouring cells or the environment. Controlling the size, number and location of these

endings is necessary to ensure that circuits of neurons get precisely the right amount of input from

their surroundings.

Glial cells form a large portion of the nervous system, and they are tasked with supporting,

cleaning and protecting neurons. In humans, part of their duties is to ‘eat’ (or prune) unnecessary

neuron endings. In fact, this role is so important that defects in glial pruning are associated with

conditions such as Alzheimer’s disease. Yet it is still unknown how pruning takes place, and in

particular whether it is the neuron or the glial cell that initiates the process.

To investigate this question, Raiders et al. enlisted the common laboratory animal Caenorhabditis

elegans, a tiny worm with a simple nervous system where each neuron has been meticulously

mapped out. First, the experiments showed that glial cells in C. elegans actually prune the endings

of sensory neurons. Focusing on a single glia-neuron pair then revealed that the glial cell could trim

the endings of a living neuron by redeploying the same molecular machinery it uses to clear dead

cell debris. Compared to this debris-clearing activity, however, the glial cell takes a more nuanced

approach to pruning: specifically, it can adjust the amount of trimming based on the activity load of

the neuron.

When Raiders et al. disrupted the glial pruning for a single temperature-sensing neuron, the

worm lost its normal temperature preferences; this demonstrated how the pruning activity of a

single glial cell can be linked to behavior.

Taken together the experiments showcase how C. elegans can be used to study glial pruning.

Further work using this model could help to understand how disease emerges when glial cells

cannot perform their role, and to spot the genetic factors that put certain individuals at increased

risk for neurological and sensory disorders.
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Here, we describe our discovery that the C. elegans AMsh glial cell engulfs NRE fragments of the

major thermosensory neuron of the animal, AFD. Thus, this critical glial function is conserved in the

nematode and across sense-organ glia. We find that engulfment requires the phospholipid trans-

porter TAT-1/ATP8A, a-integrin PAT-2, and glial phosphatidylserine receptor PSR-1. PSR-1 engages

a conserved ternary GEF complex (CED-2/CrkII, CED-5/DOCK180, CED-12/ELMO1) to activate

CED-10/Rac1 GTPase. The actin remodeling factor WSP-1/nWASp, a known effector of CED-10, acts

in AMsh glia to regulate engulfment. We also show that glial engulfment rates are regulated by tem-

perature and track AFD neuron activity. Importantly, glial CED-10/Rac1 acts downstream of neuron

activity, and CED-10 expression levels dictate NRE engulfment rates. Finally, perturbation of glial

engulfment leads to defects in AFD–NRE shape and associated animal thermosensory behavior. Our

studies show that glia actively regulate engulfment by repurposing components of the apoptotic

phagocytosis machinery. Importantly, while cell corpse engulfment is an all-or-none process, glia-

dependent engulfment of AFD endings can be dynamically regulated. We propose that other glia

may similarly deploy regulated phagocytosis to tune sensory NREs and synapses, and to dynamically

modulate adult animal behaviors.

Results

C. elegans glia engulf fragments of the AFD–NRE
Glia of the nematode C. elegans share molecular, morphological, and functional features with verte-

brate sense-organ glia and astrocytes (Bacaj et al., 2008a; Katz et al., 2018; Katz et al., 2019;

Lee et al., 2021; Singhvi and Shaham, 2019; Wallace et al., 2016). In previous studies, we estab-

lished the AMsh glia–AFD neuron pair as a tractable experimental platform to define molecular

mechanisms of single glia–neuron interactions (Singhvi et al., 2016; Singhvi and Shaham, 2019;

Wallace et al., 2016). The AFD–NRE comprises ~45 actin-based microvilli and a single microtubule-

based cilium that are embedded in the AMsh glial cell. An adherens junction between the AFD–NRE

base and the AMsh glial cell isolates this glia–NRE compartment (Figure 1A, B; Doroquez et al.,

2014; Perkins et al., 1986).

Upon imaging fluorescently labeled AFD–NREs in transgenic animal strains, we consistently

observed labeled fragments disconnected from the neuron (Figure 1C, C’, Video 1). Our previous

reconstructions-based FIB-SEM serial section data had also revealed AFD–NRE fragments discon-

nected from the rest of the AFD neuron (marked yellow, Video 1) in Singhvi et al., 2016. We exam-

ined this further using two-color imaging, which revealed that many of these fragments reside within

the AMsh glial process and cell body (Figure 1D–F’, Video 2). To confirm that these glial puncta do

not reflect spurious reporter protein misexpression in glia but rather derive from the AFD, we

ablated AFD neurons early in larval development and looked for puncta on the first day of adult-

hood. Upon ablation of one of the two bilateral AFD neurons by laser microsurgery in first larval

stage (L1) animals, fragment formation was blocked on the operated side, but not on the unoper-

ated side, or in mock-ablated animals (Figure 1G, H). Similar results were seen with stochastic

genetic ablation of AFD using the pro-apoptotic BH3-domain protein EGL-1, expressed using an

embryonic AFD-specific promoter (Figure 1I). We conclude, therefore, that AMsh glia engulf frag-

ments of the AFD–NRE in C. elegans.

3D super-resolution microscopy studies revealed that the average size of AFD-derived glial

puncta is 541 ± 145 nm along their long (yz) axis (Figure 2A). These fragments are an order of mag-

nitude smaller than recently described exophers extruded from neurons exposed to cellular stress

(~3.8 mm in diameter) and larger than ciliary extracellular vesicles (~150 nm) (Chung et al., 2013;

Melentijevic et al., 2017; Wang et al., 2014). This size is of the same order of magnitude as the

sizes of individual AFD–NRE microvilli or cilia as measured by electron microscopy (Figure 2B, Fig-

ure 2—figure supplement 1A) and (Doroquez et al., 2014).

AMsh glia engulfment of AFD–NREs occurs in adults
Engulfment of neuronal fragments by glia has been suggested to refine neuronal circuit connectivity

during neural development (Chung et al., 2013; Wilton et al., 2019). Post development, glial

engulfment is thought to regulate animal behaviors and memory (Koeppen et al., 2018;

Wang et al., 2020). To determine when C. elegans AMsh glia initiate engulfment of AFD–NRE
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Figure 1. AMsh glia contain AFD–NRE-labeled puncta. (A) Schematic of the C. elegans head region depicting AFD neuron and AMsh glial cell body

and processes. Anterior is to the top. Black box: zoomed in (B, C); red box region zoomed in (E); blue box zoomed in (F). (B) The AMsh glia’s anterior

ending ensheathes AFD–NRE dendrite, which comprises ~45 microvilli (green) and a single cilium (blue). AJ: adherens junction between AMsh glia and

AFD neuron. (C, C’) PSRTX-1b:SRTX-1:GFP specifically labels AFD–NRE microvilli. Arrows indicate microvilli fragments disconnected from the main AFD–

NRE structure, zoomed in (C’). Anterior is to the top. Scale bar: 5 mm. (D–F’) Fluorescence micrograph of AMsh glia (magenta) show AFD–NRE puncta

Figure 1 continued on next page
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fragments, we counted engulfed NRE puncta at different life stages. We found that these puncta are

rarely found in embryos or early larval stages, but are easily detected in L4 larvae and increase in

numbers during adulthood (Figure 2C, D). Thus, consistent with L1 laser ablation studies

(Figure 1G–I), engulfment of AFD–NREs by glia occurs after development of the AFD–NRE is largely

complete.

We found that ~65% of 1-day old adult animals expressing the AFD–NRE-specific gcy-8:GFP

raised at 20˚C have AMsh glia containing >10 puncta, and another ~32% of animals have 1–9

puncta/glia (n = 171) (Figure 2C) (see Materials and methods for binning details). The AMsh glial

cell of 1-day-old adults has on average 14 ± 1 puncta (n = 78) (Figure 2D). Using time-lapse micros-

copy, we found that individual puncta separate from the NRE at a frequency of 0.8 ± 0.3 events/min

and travel at 1.05 ± 0.1 mm/s down the glial process towards the cell body, consistent with motor–

protein-dependent retrograde trafficking (quantifications of videos from n = 5 animals) (Figure 2—

figure supplement 1B, Videos 1 and 2; Maday et al., 2014; Paschal et al., 1987). Finally, age-

matched animals raised at different cultivation temperatures differ in glia puncta accumulation

(Figure 2E).

AMsh glia engulf AFD–NRE microvilli but not cilia
AFD–NREs comprise multiple microvilli and a single cilium (Figure 1B). The size of puncta we

observed (541 ± 145 nm, Figure 2A) was similar to the diameters of both the microvilli (214 ± 30

nm) (Figure 2B, Figure 2—figure supplement 1A) and AFD cilium (264 ± 13 nm) (Doroquez et al.,

2014), precluding easy inference of the source

of these puncta. To distinguish which organelle

was engulfed, we undertook two approaches.

First, we labeled each organelle with specific

fluorescent tags and examined uptake by AMsh

glia. To probe microvilli, we examined transgenic

animals labeled with either of four AFD-micro-

villi-specific proteins with fluorescent tags, SRTX-

1, GCY-8, GCY-18, and GCY-23

(Colosimo et al., 2004; Inada et al., 2006). We

found that all four transgenic strains consistently

show fluorescent puncta in glia (Figure 1,

Figure 3A). Time-lapse microscopy of one of

these (Psrtx-1:SRTX-1:GFP) also revealed that

fragments originate from the AFD–NRE microvilli

(Figure 2—figure supplement 1B, Videos 1

and 2). To label cilia, we generated transgenic

animals with the ciliary protein DYF-11/

TRAF31B1 fluorescently tagged and expressed

under an AFD-specific promoter and confirmed

that PAFD:DYF-11:GFP localizes to AFD cilia

(Figure 3B). However, we found no DYF-11:GFP

puncta in AMsh glia (Figure 3A).

In a complementary approach, we examined

mutants lacking either microvilli or cilia. The

Figure 1 continued

throughout the cell (D) including the process (E) and soma (F). Image in (D) is a composite of three exposure settings of a single animal, stitched where

indicated by dotted white line. Orthogonal slices of AMsh glial process (E’, E’’, scale bar: 2 mm) and cell body (F’) show AFD–NRE fragments completely

within AMsh glia. Scale bar: 5 mm. (G, G’) Day 1 adult animal with left AFD neuron ablated by laser microsurgery during L1 larval stage. Left AMsh soma

(blue outline) lacks AFD–NRE fragments, right AMsh soma (green outline) contains fragments. (G) Fluorescence micrograph, (G’) differential

intereference contrast (DIC) microscopy image. (H, I) Quantification of puncta in ipsilateral and contralateral AMsh glial cell soma with AFD neurons

ablated by laser (H) or genetically (I). N: number of animals assayed; NRE: neuron-receptive ending.

The online version of this article includes the following source data for figure 1:

Source data 1. Raw data for Figure 1H, I.

Video 1. Dissociation of AFD–NRE fragments. Movie of

an animal’s AFD–NRE, labeled with GFP and imaged in

vivo at 7 frames/s, shows fragments blebbing at regular

intervals. NRE: neuron-receptive ending.

https://elifesciences.org/articles/63532#video1
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development of AFD, including its microvilli (but

not cilia), requires the terminal selector transcrip-

tion factor TTX-1/Otx1/orthodenticle

(Hobert, 2016; Satterlee et al., 2001). We

found that ttx-1(p767) mutants lack AFD–NRE

puncta in AMsh glia (Figure 3C–E). Cilia devel-

opment requires the IFT-B early assembly pro-

teins DYF-11/TRAF31B1 and OSM-6/IFT52. Both

are expressed in most, if not all, ciliated neurons,

and mutations in the respective genes exhibit

defective amphid cilia (Bacaj et al., 2008a;

Collet et al., 1998; Kunitomo and Iino, 2008;

Li et al., 2008; Perkins et al., 1986;

Starich et al., 1995). In contrast to ttx-1

mutants, glia puncta were present in animals

mutant for either dyf-11(mn392) or osm-6(p811)

(Figure 3C–E). In fact and on the contrary, we

found that dyf-11 cilia-defective mutants accu-

mulate more glial puncta that wild-type animals

(dyf-11: 38 ± 3 puncta, n = 27 vs. wild type:

14 ± 1, n = 78, Figure 3C, E; and a larger frac-

tion of dyf-11 and osm-6 mutants exhibit >10 puncta/glia [dyf-11: 95%, n = 61 animals, osm-6: 100%

animals, n = 82, vs. wild type: 65%, n = 171]; Figure 3D). This indicates that cilia are likely not the

primary source of glia puncta.

Data from all these approaches taken together suggest that that the observed puncta in AMsh

glia derive from AFD–NRE microvilli as the primary, if not sole, source.

The phospholipid transporter TAT-1 regulates glial engulfment
What molecular mechanism drives AFD–NRE microvilli engulfment? In other contexts, neurons

expose the membrane phospholipid phosphatidylserine (PS) on the outer leaflet of the plasma mem-

brane as a signal for glial phagocytosis (Hakim-Mishnaevski et al., 2019; Li et al., 2020; Nomura-

Komoike et al., 2020; Raiders et al., 2021; Scott-Hewitt et al., 2020). However, the underlying

molecular mechanisms that regulate this exposure in neurons are unclear. Apoptotic corpse phago-

cytosis, including in C. elegans, is also mediated by PS exposure (Figure 4A). PS exposure in apo-

ptotic cells is promoted partially by the Xkr8 factor CED-8, which is cleaved by the caspase CED-3 to

promote PS presentation for cell corpse phagocytosis (Bevers and Williamson, 2016; Wang et al.,

2007). However, mutations in neither ced-8 (Figure 4B) nor ced-3 (data not shown) affect glial NRE

uptake. Likewise, mutations in scrm-1, encoding a scramblase-promoting PS exposure (Wang et al.,

2007), only mildly decrease AFD–NRE engulfment (Figure 4B). However, a presumptive null muta-

tion in tat-1, an ortholog of mammalian translocase ATP8A required for PS sequestration to the

plasma membrane inner leaflet (Andersen et al., 2016), results in increased apoptotic cell corpse

engulfment (Darland-Ransom et al., 2008; Hong et al., 2004) and AFD–NRE engulfment

(Figure 4B, E). Thus, common and context-specific mechanisms control apoptotic and NRE engulf-

ment. Importantly, re-expression of wild-type tat-1 cDNA under an AFD-specific promoter fully res-

cues the tat-1 engulfment defect (Figure 4B). We conclude that cell-autonomous function of the PS-

flippase TAT-1 in the AFD neuron regulates engulfment of AFD–NRE fragments by AMsh glia.

The PS-receptor PSR-1 acts with the transthyretin TTR-52 to mediate
glial engulfment
How is PS on the AFD membrane recognized by AMsh glia? To address this question, we examined

mutants in receptors required for C. elegans apoptotic cell engulfment (Figure 4A). CED-1/Draper/

MEGF10 is required for removal of neuron debris in many contexts (Cherra and Jin, 2016;

Mangahas and Zhou, 2005; Nichols et al., 2016), including by glia in other species (Chung et al.,

2013; Freeman, 2015; Hamon et al., 2006; Raiders et al., 2021). Surprisingly, two independent

ced-1 loss-of-function alleles do not block NRE fragment uptake (Figure 4C). Similarly, disrupting

Video 2. AFD–NRE fragments are engulfed by AMsh

glia. Movie of an animal’s AFD–NRE (green) and AMsh

glia (magenta) imaged in vivo at 7 frames/s shows

fragments blebbing at regular intervals. NRE: neuron-

receptive ending.

https://elifesciences.org/articles/63532#video2
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Figure 2. AMsh glia puncta engulf AFD–NRE. (A) Quantification of average puncta diameter within AMsh glial cell soma. (B) Quantification of average

AFD–NRE microvilli diameter from electron micrographs. (C) Population scores of wild-type animals with AFD–NRE-labeled fragments within AMsh

soma at different developmental stages. X-axis: percent animals with fragments. Y-axis: developmental stage. Puncta numbers are quantified into three

bins (�10 fragments, black bar), (1–9 fragments, gray bar), (0 fragments, white bar). N: number of animals. Statistics: Fisher’s exact test. *p<0.05,

**p<0.005, ***p<0.0005, ****p<0.00005, ns = p>0.05. See Materials and methods for details. (D) Quantification of AFD–NRE-labeled fragments within

AMsh soma at different developmental stages. X-axis: developmental stage. Y-axis: number of puncta per AMsh glial cell soma. Median puncta counts

and N (number of animals): L1 larva (0.5 ± 0.2 puncta, n = 15 animals), L3 larva (1.6 ± 0.5 puncta, n = 10 animals), L4 larva (8.6 ± 1.2 puncta, n = 19

animals), day 1 adult (14.1 ± 1 puncta, n = 78 animals), and day 3 adult (29.2 ± 3 puncta, n = 17 animals). Statistics: one-way ANOVA w/ multiple

comparison. *p<0.05, **p<0.005, ***p<0.0005, ****p<0.00005, ns = p>0.05. (E) Average number of fragments in animals cultivated at 15˚C, 20˚C, or 25˚

C. Refer (D) for data presentation details. Median puncta counts and N (number of animals): 15˚C (6 ± 2 puncta, n = 8 animals), 20˚C (14.1 ± 1 puncta,

n = 78 animals), and 2 5˚C (27.6 ± 3 puncta, n = 16 animals). NRE: neuron-receptive ending.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. AMsh glia puncta engulf AFD–NRE.

Figure supplement 1. AMsh glia engulf AFD–NRE fragments.
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Figure 3. AMsh glia engulf AFD–NRE microvilli but not cilia. (A) AFD–NRE-labeled fragments observed in different transgenic animal strains. Each

strain has a different tagged fusion protein, driven by a different AFD-specific promoter, localizing to either microvilli (green) or cilium (blue). X-axis:

genotype; Y-axis: percent animals with AFD–NRE-labeled puncta inside AMsh soma. N: number of animals analyzed. (B) Schematic depicting the two

compartments of the AFD–NRE, which is an array of ~45 actin-based microvilli (green) and a single microtubule-based cilium (blue). Fluorescence and

Figure 3 continued on next page
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CED-6/GULP and CED-7/ABCA1, which function with CED-1/MEGF10 in C. elegans apoptotic

phagocytosis and in other species (Flannagan et al., 2012; Hamon et al., 2006; Morizawa et al.,

2017; Reddien and Horvitz, 2004; Zhou et al., 2001), does not block engulfment either

(Figure 4C). Further, mutations in tyrosine kinases related to MeRTK, required for astroglial engulf-

ment of neuronal debris in vertebrates (Chung et al., 2013), also seem to not be required for AMsh

engulfment of AFD–NRE (Figure 4—figure supplement 1A; Popovici et al., 1999).

Loss of the conserved phosphatidylserine receptor PSR-1/PSR has defects in apoptotic cell corpse

engulfment in C. elegans and zebrafish (Hong et al., 2004; Wang et al., 2003). Remarkably, dele-

tion of psr-1 dramatically reduces AFD–NRE engulfment by AMsh glia (Figure 4D, E). Expression of

the PSR-1C long isoform in AMsh glia rescues psr-1 mutant defects significantly (Figure 4D), sug-

gesting that PSR-1 acts in glia to promote NRE uptake. Consistent with this function, a GFP:PSR-1

translational reporter expressed under an AMsh-glia-specific promoter localizes to glial membranes,

including those around AFD–NRE microvilli (Figure 4F, F’).

If PSR-1 recognizes PS on AFD–NRE membranes to mediate engulfment, we reasoned it should

act downstream of TAT-1. We therefore constructed and analyzed psr-1; tat-1 double mutants.

Unlike tat-1 single mutants that show increased NRE engulfment, psr-1; tat-1 animals exhibit

reduced engulfment similar to psr-1 single mutants (Figure 4D). Thus, PSR-1 acts downstream of

TAT-1.

The transthyretin protein TTR-52 mediates binding between PS and PSR-1 (Neumann et al.,

2015; Wang et al., 2010). Supporting the PSR-1 results, we found that a mutation in ttr-52 also

reduces NRE uptake to a similar extent as mutations in psr-1 (Figure 4D). In addition, we found that

psr-1; ttr-52 double mutants show no significant enhancement of puncta defects compared to either

single mutant, suggesting that PSR-1 and TTR-52 function within the same pathway for PS recogni-

tion by AMsh glia (Figure 4D).

Integrin a-subunit PAT-2 regulates glial engulfment with PSR-1
Although psr-1 loss reduces puncta numbers (and by inference, NRE engulfment) dramatically, we

noted that neuronal fragment uptake is not completely eliminated (Figure 4D). This suggested that

another receptor may be involved. Integrins function with MeRTK to promote photoreceptor cell

outer segment engulfment by retinal RPE glia (Mao and Finnemann, 2012), and the C. elegans

genome encodes two a-integrin subunits, INA-1 and PAT-2, both of which are implicated in apopto-

tic cell phagocytosis in C. elegans (Hsieh et al., 2012; Neukomm et al., 2014; Sáenz-Narciso et al.,

2016). We found that while a mutation in ina-1 has no effect on NRE engulfment (Figure 4—figure

supplement 1A), loss of PAT-2 by RNA interference (RNAi) significantly blocks AFD–NRE phagocy-

tosis (Figure 4G). Further, pat-2 RNAi strongly enhances glia engulfment defects of psr-1 mutants

(Figure 4G). Thus, PAT-2/a-integrin and PSR-1 appear to act together for glial engulfment of AFD–

NRE.

Curiously, not only do mutations in ced-1 not block the appearance of puncta in glia, we found

that ced-1(e1754) strong loss-of-function mutant animals actually exhibit enhanced puncta numbers

compared to wild-type animals (Figure 4C). We found that pat-2 RNAi did not block this enhanced

engulfment defect of ced-1(e1754) animals (Figure 4—figure supplement 1B), suggesting that PAT-

2 and CED-1 likely do not function synergistically as PS-receptors for glia-dependent phagocytosis.

In line with this, while psr-1 ced-1 double mutant animals exhibit a slightly higher fraction of animals

with no puncta, ced-1 in fact suppresses the synergistic engulfment defects seen in psr-1; pat-2

(RNAi) animals (Figure 4—figure supplement 1B). This suggests that either ced-1 has a minor role

Figure 3 continued

DIC micrographs showing expression of ciliary DYF-11:GFP, under an AFD neuron-specific promoter, in AFD cilia. C: cilia (arrowhead); D: AFD dendrite

(arrow). (C) Fluorescence micrograph panel showing AFD–NRE tagged puncta (blue arrows) within AMsh glial cell soma (magenta outline) in different

genetic backgrounds as noted. AFD cell body (red asterisk). Scale bar: 5 mm. (D) Population counts of animals with AMsh glial puncta. Refer Figure 2C

for data presentation details. Alleles used: ttx-1(p767), dyf-11(mn392), and osm-6(p811). (+) p<0.05 compared to wild type, (–) p�0.05 compared to wild

type. (E) Median puncta counts and N (number of animals): wild type (14 ± 1 puncta, n = 78 animals), ttx-1(p767) (0.1 ± 0.1 puncta, n = 7 animals),

and dyf-11(mn392) (38.6 ± 3.6 puncta, n = 27 animals). Refer Figure 2D for data presentation details. NRE: neuron-receptive ending.

The online version of this article includes the following source data for figure 3:

Source data 1. AMsh glia engulf AFD–NRE microvilli but not cilia.
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Figure 4. Engulfment of AFD–NRE by AMsh glia requires the phosphatidylserine receptor PSR-1 and integrin PAT-2. (A) Schematic of the genetic

pathway underlying apoptotic corpse engulfment in C. elegans. (B–D) Population counts of animals with AMsh glia puncta. Refer Figure 2C for data

presentation details. (+) p<0.05 compared to wild type, (–) p�0.05 compared to wild type. (B) Alleles used in this graph: tat-1(tm3110), tat-1(tm1034),

scrm-1(tm805), and ced-8(n1819). (C) Alleles used in this graph: ced-1(e1754), ced-1(e1735), ced-7(n2094), and ced-6(n1813). (D) Alleles used in this

Figure 4 continued on next page
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in engulfment as a PS-receptor or its role in this glia-dependent phagocytosis is non-canonical. To

examine this further, we also asked if ttr-52 acts with ced-1. The ced-1;ttr-52 double mutant had the

same increased glia puncta as ced-1 single mutants, suggesting that ced-1 acts genetically down-

stream of ttr-52 (Figure 4—figure supplement 1C). Finally, the ced-1; ttr-52; psr-1 triple mutant

also phenocopied ced-1 single mutants in having increased number of glia puncta, suggesting again

that CED-1 acts downstream of PSR-1 and TTR-52. These data raise the possibility that in NRE

engulfment CED-1 may instead act in phagolysosome maturation downstream of PS recognition, as

has been observed for CED-1 in other contexts (Yu et al., 2006).

The CED-2/5/12 ternary GEF complex acts in AMsh glia to promote
engulfment
The ternary complex of CED-2/CrkII, CED-5/DOCK1, and CED-12/ELMO1 acts downstream of PSR-1

for apoptotic cell engulfment (Reddien and Horvitz, 2004; Wang et al., 2003). We found that ani-

mals bearing mutations in ced-2, ced-5, or ced-12 exhibit reduced AFD–NRE puncta in AMsh glia

(Figure 5A). Furthermore, expression of the CED-12B isoform in AMsh glia is sufficient to rescue

ced-12 mutant defects (Figure 5A). We conclude, therefore, that the CED-2/CED-5/CED-12 complex

also likely regulates engulfment of AFD–NREs.

Glial Rac1 GTPase CED-10 controls rate of engulfment
CED-2/CED-5/CED-12 act as a GEF for the Rac1 GTPase CED-10, a major downstream effector of a

number of apoptotic phagocytosis pathways (Flannagan et al., 2012; Reddien and Horvitz, 2004;

Wang and Yang, 2016; Figure 4A). CED-10 is also implicated in engulfment of photoreceptor outer

segments by RPE glia-like cells in mammals and debris of injured axons by glia in Drosophila

(Kevany and Palczewski, 2010; Lu et al., 2014; Nichols et al., 2016). We found that two loss-of-

function mutations in ced-10, or overexpression of dominant-negative CED-10T17N, block nearly all

engulfment of AFD–NRE fragments by AMsh glia (Figure 5B–D). Specifically, in two different alleles,

very few puncta are observed in glia (ced-10(n3246) [3.08 ± 0.79, n = 39] and ced-10(n1993)

[2.4 ± 0.6 puncta, n = 24 animals] vs. wild type [14 ± 1 puncta, n = 78 animals]). Furthermore, barely

any mutant animal had >10 puncta (ced-10(n3246) = 0.81%, n = 124; and ced10(n1993) = 2.78%,

n = 72; compared to wild type = 64%, n = 171). Expressing CED-10 only in AMsh glia completely

restores engulfment to ced-10 loss-of-function mutants (Figure 5B–D).

To determine how CED-10 functions with respect to CED-2/CED-5/CED-12 and PSR-1, we gener-

ated psr-1; ced-10 and ced-12; ced-10 double mutants. Both strains show strong defects in puncta

numbers reminiscent of ced-10 single mutants (Figure 5E). Furthermore, transgenic expression of

CED-10 is sufficient to overcome the partial loss of NRE engulfment in psr-1 mutants (Figure 5E).

Our data are consistent with the interpretation that, like in cell corpse engulfment, CED-10/Rac1

GTPase likely functions in glia downstream of CED-2/CED-5/CED-12 and PSR-1, to promote AMsh

glial engulfment of NREs. This activation is specific as mutations in another CED-10 activator, UNC-

73/TRIO, do not affect NRE uptake (Figure 4—figure supplement 1A; Lundquist et al., 2001;

Sáenz-Narciso et al., 2016).

Unexpectedly, expression of constitutive active CED-10G12V also results in reduced engulfed

puncta (Figure 5D). This may indicate that a GTPase cycle is needed for engulfment to proceed

(Bernards and Settleman, 2004; Sáenz-Narciso et al., 2016; Singhvi et al., 2011; Takai et al.,

Figure 4 continued

graph: psr-1(tm469), tat-1(tm1034), and ttr-52(tm2078). (E) Quantification of puncta within AMsh cell soma in listed mutants. Refer Figure 2D for data

presentation details. Median puncta counts and N (number of animals): wild type (14 ± 1 puncta, n = 78 animals), psr-1(tm469) (7.4 ± 0.8 puncta, n = 28

animals), and tat-1 (41.6 ± 4.6 puncta, n = 19 animals). (F) Fluorescence micrograph of a transgenic animal with GFP tagged PSR-1 expressed specifically

in AMsh glia (magenta) localizing on the apical membrane around AFD–NRE (green). GFP:PSR localizes to apical membrane in AMsh glia (yellow arrow)

around AFD–NRE (asterisk). Scale bar: 5 mm. (F’) Zoom of box in two-color merged image. (G) RNAi (control pat-2) in wild-type or psr-1(tm469) mutant

animals. Refer Figure 2C for data presentation details. EV: empty vector control. NRE: neuron-receptive ending.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Engulfment of AFD–NRE by AMsh glia requires the phosphatidylserine receptor PSR-1 and integrin PAT-2.

Figure supplement 1. Engulfment of AFD–NRE by AMsh glia does not depend on some RTK or CED-1/MEGF10/Draper.
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Figure 5. Phagocytosis pathway components, glial CED-10 levels, and actin remodeling actively control rate of engulfment. (A) Population counts of

animals with AMsh glial puncta in the indicated genetic backgrounds. Refer Figure 2C for data presentation details. (+) p<0.05 compared to wild type,

(–) p�0.05 compared to wild type. Alleles used in this graph: ced-12(n3261), ced-12(k149), ced-2(e1752), and ced-5(n1812). (B) Quantification of puncta

within AMsh cell soma in phagocytosis pathway mutants. Refer Figure 2D for data presentation details. Median puncta counts and N (number of

Figure 5 continued on next page

Raiders et al. eLife 2021;10:e63532. DOI: https://doi.org/10.7554/eLife.63532 12 of 32

Research article Cell Biology Neuroscience

https://doi.org/10.7554/eLife.63532


2001; Teuliere et al., 2014). Alternatively, it may be that this form of the protein promotes hyperef-

ficient engulfment, which does not leave much NRE to be engulfed. Supporting the latter model,

the AFD–NRE is significantly shorter in CED-10G12V mutants (see below). Furthermore, overexpres-

sion of wild-type CED-10, but not of wild-type PSR-1 or CED-12, increases NRE engulfment

Figure 4D, Figure 5A,D). Glial CED-10 is, therefore, both necessary and sufficient to regulate the

rate at which AMsh glial engulf AFD–NRE fragments.

During apoptotic cell engulfment, CED-10 executes phagocytic arm extension by mediating actin

remodeling (Wang and Yang, 2016). We, therefore, examined animals bearing a loss-of-function

mutation in wsp-1, which encodes an actin polymerization factor, and found a block in NRE engulf-

ment (Figure 5—figure supplement 1A). As with overexpression of CED-10, increasing levels of

WSP-1 specifically in AMsh glia also lead to increased NRE engulfment (Figure 5—figure supple-

ment 1A). These results suggest that CED-10-dependent actin remodeling is the rate-limiting step

for the engulfment of AFD–NREs by glia.

Glial engulfment tracks neuron activity post development
Previous studies showed that cyclic-nucleotide-gated (CNG) ion channels localize to the AFD cilium

base and are required for AFD neuron firing in response to temperature stimuli (Cho et al., 2004;

Ramot et al., 2008; Satterlee et al., 2004). These channels are mis-localized in cilia-defective

mutants (Nguyen et al., 2014). Independently, it has been shown that cilia-defective mutants exhibit

deficits in thermotaxis behavior (Tan et al., 2007). Since we found that cilia-defective mutants have

increased engulfment (Figure 3), these taken together prompted us to examine the role for neuron

activity in glial engulfment directly.

We examined animals defective in TAX-2, the sole CNG b-subunit in the C. elegans genome, or

in TAX-4 and CNG-3, a-subunits that function together in AFD (Cho et al., 2004; Hellman and

Shen, 2011; Satterlee et al., 2004) for engulfment defects. Glia in mutant animals accumulate extra

puncta (tax-2: 28.1 ± 2 puncta, n = 37; tax-4; cng-3 double mutants: 23.8 ± 2.3 puncta, n = 17)

(Figure 6A–C), and in tax-2 mutants, a larger fraction of the animal population has >10 puncta (tax-

2, 99%, n = 92 animals; wild type, 65%, n = 171 animals) (Figure 6C). Conversely, we assessed the

consequence of increasing the levels of cGMP, which promotes CNG channel opening, by mutating

the cGMP degrading enzymes PDE-1 and PDE-5 expressed in AFD neurons (Ramot et al., 2008;

Singhvi et al., 2016). We found that pde-1; pde-5 double mutant animals have reduced glia puncta

numbers compared to wild type (7.1 ± 1.4, n = 11 vs. 14 ± 1, n = 78) (Figure 6B, C). Finally, acute

and cell-specific chemogenetic silencing of AFD using a histamine-gated chloride channel

(Pokala et al., 2014) expressed under an AFD-specific promoter leads to puncta enrichment in

AMsh glia within 24 hr (Figure 6E, F). Thus, AFD activity levels reciprocally affect AFD–NRE engulf-

ment levels and can do so acutely.

Accumulation of glial puncta in AFD activity mutants could result from increased engulfment rates

or, alternatively, from decreased puncta degradation. We favor the former model as we found that

the increase in puncta number seen in tax-2 mutant glia is entirely suppressed by loss of CED-10

(Figure 6B, C). Likewise, we also observed significant suppression in tax-2; psr-1(tm469) double

mutants compared to tax-2 alone; and this suppression is enhanced further by pat-2 (RNAi)

(Figure 6C, D). Loss of ced-10 also suppresses excess engulfment following acute chemogenetic

silencing of AFD (Figure 6F). Our findings are therefore consistent with neuron activity controlling

NRE engulfment through the CED-10 pathway.

Figure 5 continued

animals): wild type (14 ± 1 puncta, n = 78 animals), ced-10(n1993) (2.4 ± 0.6 puncta, n = 24 animals), ced-10(n3246) (3.08 ± 0.79, n = 39), andPAMsh:CED-

10 (104.7 ± 7.8 puncta, n = 14 animals). (C) Panel showing AFD–NRE tagged puncta (blue arrows) within AMsh glial cell soma (magenta outline) in

different genetic backgrounds as noted. AFD cell body (red asterisk). Scale bar: 5 mm. (D, E) Population counts of animals with AMsh glial puncta in

genetic backgrounds indicated. Refer Figure 2C for data presentation details. (+) p<0.05 compared to wild type, (–) p�0.05 compared to wild type. (D)

Alleles used in this graph: ced-10(n3246) and ced-10(n1993). CED-10G12V and CED-10T17N is a constitutively active or dominant negative form of CED-

10, respectively. (E) Alleles used in this graph: psr-1(tm469), ced-10(n3246), and ced-12 (k149). NRE: neuron-receptive ending.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Phagocytosis pathway components, glial CED-10 levels, and actin remodeling actively control rate of engulfment.

Figure supplement 1. The actin regulator WSP-1 can regulate engulfment cell-autonomously in AMsh glia.

Raiders et al. eLife 2021;10:e63532. DOI: https://doi.org/10.7554/eLife.63532 13 of 32

Research article Cell Biology Neuroscience

https://doi.org/10.7554/eLife.63532


ta
x
-2

PGCY-8:GCY-8:GFP

w
ild

 t
y
p

e *

*

C

A
P

S
R

T
X

1
B
:H

is
-C

l:G
F

P

wild type wild type

* * *
ced-10(n3246)

B

E

No Histamine + Histamine + Histamine

0 50 100

pat-2(RNAi)

EV

pat-2(RNAi)

EV

pat-2(RNAi)

EV

% worms

10+ 1-9 0

113

Fragments:

128

33

35

34

36

+

-

+

vs.
WT
EV

+

+

D

F

W
T M

ock

W
T H

istamine

ced-10 M
ock

ced-10 Histamine
0

20

40

60

80

100

%
 w

o
rm

s
 w

it
h

 f
ra

g
m

e
n

ts

***

ns

182 120 42 48

#
 o

f 
A

F
D

 f
ra

g
m

e
n

ts
 i

n
 A

M
s
h

Figure 6. Glial phagocytic pathway tracks neuron activity to regulate AFD–NRE engulfment rate. (A) Panel showing AFD–NRE tagged puncta (blue

arrows) within AMsh glial cell soma (magenta outline) in different genetic backgrounds, as noted. AFD cell body (red asterisk). Scale bar: 5 mm. (B)

Quantification of puncta within AMsh cell soma in phagocytosis pathway mutants. Refer Figure 2D for data presentation details. Median puncta counts

and N (number of animals): wild type (14 ± 1 puncta, n = 78 animals), pde-1(nj57) pde-5(nj49) double mutant animals (7.1 ± 1.4, n = 11 animals), tax-4

Figure 6 continued on next page
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Glial engulfment regulates AFD–NRE shape and thermotaxis behavior
What might be the function of AFD–NRE engulfment by glia? To test this, we examined AFD–NRE

shape by 3D super-resolution imaging of transgenic mutants bearing a tagged reporter that specifi-

cally marks AFD–NRE microvilli. We found that ced-10 loss of function, or AMsh glia-specific overex-

pression of dominant negative CED-10T17N, results in elongated AFD–NRE microvilli (Figure 7A, B,

Figure 7—figure supplement 1B). By contrast, overexpressing wild-type CED-10, which has excess

puncta, produces shorter AFD–NRE microvilli, and this defect worsens with age (Figure 7A, B). Fur-

thermore, overexpressing GTP-locked CED10G12V also leads to shorter AFD–NRE microvilli even

though it paradoxically has reduced number of puncta in glia (Figure 7—figure supplement 1A, B)

consistent with the idea that engulfment in this strain may be so efficient that no NREs remain to be

engulfed. Thus, AMsh glial engulfment of NRE fragments is important for regulating the AFD–NRE

microvilli length.

When placed on a temperature gradient, C. elegans seek their temperature of cultivation, Tc
(Hedgecock and Russell, 1975; Figure 7C–F, wild-type data in black line). This animal behavior

depends on thermosensory transduction at the AFD–NRE (Goodman and Sengupta, 2018;

Mori and Ohshima, 1995). Previous studies have shown that animals with defects in AFD–NRE

shape also exhibit defects in this thermosensory behavior. Consistent with this, we found that ced-10

mutants exhibit altered thermosensory behavior. While wild-type animals reared at 25˚C migrate to

their Tc = 25˚C on a linear temperature gradient, ced-10 mutants prefer cooler temperatures

(Figure 7C, D). Furthermore, animals carrying integrated transgenes overexpressing CED-10 only in

AMsh glia also exhibit athermotactic defects regardless of the cultivation temperatures (Figure 7E,

F). We conclude, therefore, that AFD–NRE engulfment by AMsh glia is required for appropriate ani-

mal thermotaxis behaviors.

The behavior defects we observed are consistent with the thesis that reduced neuron activity

drives glial engulfment. The athermotactic behavior of CED-10 overexpression strains mimics similar

defects of tax-2 or tax-2; tax-4 double mutant animals, and both manipulations lead to increased

puncta and reduced neuron activity (Figure 7—figure supplement 1C, D; Cho et al., 2004;

Satterlee et al., 2004). Likewise, the cryophilic behavior of ced-10 mutants, which have reduced glia

puncta, is similar to that observed in other mutants with increased AFD cGMP levels (Singhvi et al.,

2016). We favor the model that activity-dependent glial engulfment of NRE is one mechanism by

which AMsh glia and AFD coordinate regulation of NRE shape and animal thermosensory behavior.

Discussion
We report our discovery that C. elegans glia, like glia of other species, engulf associated neuron

endings, highlighting evolutionary conservation of this critical glial function (Figure 8). Exploiting

unique features of our experimental model, we demonstrate that glial CED-10 levels dictate engulf-

ment rates, revealing that glia drive neuronal remodeling and do not just passively clear shed neuro-

nal debris. Indeed, we demonstrate that engulfment is required for post-developmental

maintenance of sensory NRE shape and behavior. This also extends a role for glial engulfment in the

active sensory perception of temperature. Importantly, our studies allow us to directly demonstrate

at single-cell resolution that pruning of individual neurons by a single glia modifies animal behavior.

This, in conjunction with our finding that phagocytosis is impacted by neuronal activity states, dem-

onstrates important physiological relevance.

Figure 6 continued

(p678);cng-3(jh113) double mutants (23.8 ± 2.4 puncta, n = 17 animals), tax-2(p691) (28.1 ± 2 puncta, n = 37 animals), and ced-10(n3246); tax-2(p691)

double mutants (1.8 ± 0.5 puncta, n = 25 animals). (C, D) Population counts of animals with AMsh glial puncta in genetic backgrounds indicated. Refer

Figure 2C for data presentation details. (+) p<0.05 compared to wild type, (–) p�0.05 compared to wild type. (C) Alleles used in this graph: pde-1(nj57),

pde-5(nj49), tax-4(p678), cng-3(jh113), tax-2(p691), ced-10(n3246), and psr-1(tm469). (D) Alleles used in this graph: tax-2(p691), and psr-1(tm469). EV:

empty vector control. (E) Percent wild type or ced-10(n3246) mutant animals with observable GFP+ puncta with or without histamine. N: number of

animals. (F) Quantification of percent animals with puncta in AMsh glia (Y-axis) in transgenic strains carrying a histamine-gated chloride channel, with/

out histamine activation as noted (X-axis). NRE: neuron-receptive ending.

The online version of this article includes the following source data for figure 6:

Source data 1. Glial phagocytic pathway tracks neuron activity to regulate AFD–NRE engulfment rate.

Raiders et al. eLife 2021;10:e63532. DOI: https://doi.org/10.7554/eLife.63532 15 of 32

Research article Cell Biology Neuroscience

https://doi.org/10.7554/eLife.63532


wild type PAMsh:CED-10A

C

Bced-10(n3246)

D

E F

%
 o

f 
w

o
r
m

s

0

20

40

60
Wild Type
ced-10

480

917

TC = 25 C

16 C 25 C

%
 o

f 
w

o
r
m

s

0

20

40

60 Wild Type

PAMsh:CED-10 Strain #1

PAMsh:CED-10 Strain #2

566

710

459

TC = 25 C

16 C 25 C

0

20

40

60

80

100

Long
Short
Absent

69

78

50

57

49

50

Figure 7. AMsh glial engulfment of AFD–NRE modulates AFD–NRE shape and animal thermosensory behavior. (A) AFD–NRE microvilli labeled with

GFP in day 3 adult animals of genotypes as indicated. Three representative images are shown for each genotype. Scale bar: 5 mm (B) Quantification of

percent animals with defective AFD–NRE microvilli shape. N: number of animals scored. (C–F) Thermotaxis behavior assays for animals of indicated

genotype raised at 15˚C (C, E) or 25˚C (D, F). Animals assayed 24 hr post-mid-L4 larval stage. N: number of animals. NRE: neuron-receptive ending.

Figure 7 continued on next page
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Controlled tuning of the phagocytosis machinery
Our studies reveal a fundamental distinction between glia-dependent phagocytosis and other modes

of engulfment. Apoptotic cell phagocytosis, glial clearance of injury-induced neuronal debris, and

related engulfment events are all-or-none phenomena: engulfment either occurs or does not. By

contrast, we show here that in AMsh glia engulfment rate is dynamically tuned throughout animal

life to modulate NRE morphology, impacting animal behavior. The molecular parallels between the

engulfment machinery in the peripheral sense-organ AMsh glia and other CNS glial engulfment lead

us to posit that controlled phagocytosis may similarly regulate glial engulfment in other settings.

Distinct receptors mediate PS-dependent glial pruning
Accompanying this more versatile engulfment program is a shift in the relevance of specific engulf-

ment receptors. Apoptotic phagocytosis in C. elegans relies predominantly on CED-1, with the PS-

receptor PSR-1 playing a minor role (Wang et al., 2003; Wang and Yang, 2016). Surprisingly, while

CED-1 is dispensable for pruning by AMsh glia, we identified PSR-1/PS-receptor as a novel regulator

of glial pruning. Why do CED-1 and PSR-1 have differing valence in apoptotic phagocytosis and glial

pruning? One possibility is that this difference in receptors reflects the size of particles engulfed.

Supporting this notion, engulfment of small cell process debris of the C. elegans tail-spike cell is also

independent of CED-1 (Ghose et al., 2018).

We identified PSR-1 and integrins as a PS-receptor driving AMsh glial engulfment of AFD–NRE.

Other PS-receptors that have been shown to regulate glial engulfment across species include CED-

1/MEGF10/Draper, MerTK, and GPR56, and it is likely that yet others await identification

Figure 7 continued

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. AMsh glial engulfment of AFD–NRE modulates AFD–NRE shape and animal thermosensory behavior.

Figure supplement 1. AMsh glial CED-10 tracks neuron activity to regulate AFD–NRE engulfment.
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Figure 8. Model of AMsh glial engulfment of AFD–NRE. Model depicting molecular machinery driving

engulfment of AFD neuron microvilli by AMsh glia. TAT-1 maintains phosphatidylserine on the inner plasma

leaflet. Neuron activity negatively regulates engulfment. The phosphatidylserine receptor PSR-1 signals via ternary

GEF complex CED-2/5/12 to activate Rac1 GTPase CED-10, along with PAT-2/integrin. CED-10 and its

downstream effector, WSP-1, drive engulfment of AFD neuron microvilli fragments. NRE: neuron-receptive ending.
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(Chung et al., 2013; Freeman, 2015; Hilu-Dadia and Kurant, 2020; Kevany and Palczewski, 2010;

Li et al., 2020; Nomura-Komoike et al., 2020; Raiders et al., 2021; Tasdemir-Yilmaz and Free-

man, 2014; Vecino et al., 2016). This then raises the question of why one analogous glial function

of pruning would require different receptors. We speculate that this may reflect the molecular het-

erogeneity across glia and/or the context of engulfment (Raiders et al., 2021).

Mediators of PS exposure in C. elegans glial pruning
PS exposure has emerged as a classic engulfment signal for both apoptotic phagocytosis and glial

pruning, but how this is regulated remains enigmatic. We identify this as a conserved feature in C.

elegans glial engulfment and implicate the phospholipid transporter TAT-1/ATP8A in this process.

TAT-1 is a member of the type 4 family P4 ATPases, which flip PS from exoplasmic to cytoplasmic

membrane leaflets (Andersen et al., 2016). We note that murine P4-ATPases ATP8A1 and ATP8A2

are expressed in the nervous system, and knockout mice exhibit deficient hippocampal learning, sen-

sory deficits, cerebellar ataxia, mental retardation, and spinal cord degeneration, and shortened

photoreceptor NRE length (Coleman et al., 2014). Given this intriguing parallel, it will be interesting

to probe whether ATP8A similarly modulates glial pruning in mammals.

We also identify the PS bridging molecule TTR-52 as a regulator of pruning. It is also implicated

in apoptotic phagocytosis and nerve regeneration (Neumann et al., 2015; Wang et al., 2010). Reti-

nal RPE glia and cortical astrocytes also require PS-bridging opsonins (Gas6 and MFGE8) to engulf

neuron fragments (Bellesi et al., 2017; Kevany and Palczewski, 2010).

Whether all glia require PS opsonization for pruning remains to be determined.

Glia direct pruning with subcellular precision
Our finding that proper animal behavior requires precise levels of NRE engulfment by glia suggests

that engulfment must proceed with extraordinary specificity so that behavior is optimal. Indeed, we

find that AMsh glia prune AFD–NRE with subcellular precision. While AFD’s actin-rich microvilli are

removed by glia, its adjacent microtubule-based cilium is not. Aberrantly excessive/reduced pruning

correlate with disease in mammals, hinting that similar subcellular precision in marking fragments/

endings for engulfment might be involved (Chung et al., 2015; Wilton et al., 2019). How this preci-

sion is regulated will be fascinating to explore.

Peripheral sense-organ glia pruning modulates NRE shape and animal
sensory behaviors
A role for pruning in normal neural functions has so far been investigated for central nervous system

glia (astrocytes, microglia, retinal glia). Peripheral glia of the inner ear are known to activate phago-

cytosis only in injury settings (Bird et al., 2010). Our studies demonstrate that pruning of sensory

neuron endings by glia is required for accurate sensory perception. Thus, glial pruning is conserved

in both CNS and PNS and is executed for normal neural functions by analogous molecular mecha-

nisms. While these studies identify glial pruning as a mechanism to control NRE shape in response to

activity states, we note that it is likely that AMsh glia and AFD neuron cooperate through multiple

mechanisms to regulate AFD–NRE shape and animal thermosensory behaviors, including some that

we previously identified (Singhvi et al., 2016; Wallace et al., 2016). Such regulatory complexity

might reflect the fact that appropriate thermosensory behaviors are critical for animal survival.

Active pruning versus passive clearance of debris
An outstanding question in understanding the role of glia is whether glia actively prune NREs and

neuron fragments or passively clear shed debris. Three lines of evidence in this study lead us to con-

clude that AMsh glia actively drive engulfment rather than passively clearing debris. (1) Our finding

that glial CED-10 levels can modulate engulfment rates, NRE shape, and animal behavior suggests

that this process can be triggered by glia. (2) While both CED-10 overexpression and ttx-1 mutants

have short NRE (Satterlee et al., 2001; Figure 4—figure supplement 1B), unlike animals overex-

pressing CED-10, ttx-1 mutants have fewer puncta, not more (Figure 2A). Thus, short NRE shape

can derive from independent mechanisms. (3) While both ced-10 and tax-2 mutants have longer, dis-

organized NRE (Satterlee et al., 2004; Singhvi et al., 2016), tax-2 mutants have more puncta, not

fewer. If glial pruning only passively cleared debris, we would have expected the opposite.
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Furthermore, that engulfment tracks neuron activity and modulating this process impacts animal

behavior also suggests a physiological role for this process.

In summary, our findings reveal glial engulfment as an active regulator of neural functions. Impor-

tantly, they directly and causally link pruning of individual neuron endings to animal behavior at sin-

gle-molecule and single-cell resolution. This raises the possibility that engulfment may be a general

mechanism by which glia dynamically modulate sensory perception and neural functions, across

modalities, systems, and species.

Materials and methods

Worm methods
C. elegans animals were cultured as previously described (Brenner, 1974; Stiernagle, 2006). Bristol

N2 strain was used as wild type. For all experiments, animals were raised at 20˚C for at least two

generations without starvation, picked as L4 larvae onto fresh plate, and assayed 1 day later unless

otherwise noted. Germline transformations by microinjection to generate unstable extrachromo-

somal array transgenes were carried out using standard protocols (Fire et al., 1990; Mello et al.,

1991; Stinchcomb et al., 1985). Integration of extrachromosomal arrays was performed using UV+

trimethyl psoralen. All transgenic arrays were generated with 5 ng/ml Pelt-2:mCherry, 20 ng/ml Pmig-24:

Venus, or 20 ng/mL Punc-122:RFP as co-injection markers (Abraham et al., 2007; Armenti et al.,

2014; Miyabayashi et al., 1999). Further information on all genetic strains and reagents is available

upon request.

Plasmids
CED-10 plasmids
ced-10B isoform cDNA was isolated from a mixed stage cDNA library by PCR amplification with pri-

mers containing XmaI and NheI restriction enzyme sites and directionally ligated into pAS465

(PF53F4.13:SL2:mCherry) to generate pAS275 plasmid. CED-10G12V and CED-10T17N mutations were

derived by site-directed mutagenesis of pAS275 plasmid to produce pASJ29 (pSAR8) and pASJ37

(pSAR11), respectively.

CED-12 plasmids
ced-12B isoform cDNA was isolated from a mixed stage cDNA library by PCR amplification with pri-

mers containing a XmaI and NheI restriction enzyme sites and directionally ligated into pAS465 to

generate the pASJ11 (pSAR1) plasmid.

PSR-1 plasmid
psr-1 C isoform cDNA was isolated from a mixed stage cDNA library by PCR amplification with pri-

mers containing BamHI and NheI restriction enzyme sites and directionally ligated into pAS465 to

generate the pASJ23 (pSAR7) plasmid.

TAT-1 plasmid
tat-1 A isoform cDNA was generously gifted by the lab of Ding Xue. The PSRTX-1b promoter fragment

was digested from the pSAR19 plasmid with SphI and XmaI. A 430 bp fragment of the genomic tat-

1 sequence containing the first two exons and first intron was amplified by PCR with added 50 XmaI

site. This fragment was digested with XmaI and SphI. The p49_78 plasmid containing tat-1 cDNA

was digested with SphI, and all three fragments were ligated to make pASJ114 (pSAR35). Correct

orientation was confirmed by sequencing of the ligation product.

GFP:PSR-1 plasmid
psr-1 C isoform cDNA was isolated from a mixed stage cDNA library by PCR amplification with pri-

mers containing BamHI and PstI restriction enzyme sites and ligated into pAS516 (PF53F4.13:GFP) to

produce pASJ56 (pSAR18).
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His-Cl1 PLASMID
Histamine gated chloride channel sequence from pNP424 (Pokala et al., 2014) was restriction

digested with NheI and KpnI enzymes and ligated to pAS178 (PSRTX-1:SL2:GFP) to produce pAS540.

Recombineered fosmids
The following fosmids with GFP recombineered in-frame in the coding sequence were obtained

from the MPI-TransgeneOme Project: gcy-8 (Clone ID: 02097061181003035 C08), gcy-18 (Clone ID:

9735267524753001 E03), and gcy-23 (Clone ID: 6523378417130642 E08).

Microscopy, image processing, and analyses
Animals were immobilized using either 2 mM tetramizole or 100 nm polystyrene beads (Bangs Labo-

ratories, catalog # PS02004). Images were collected on a Deltavision Elite RoHS wide-field deconvo-

lution system with Ultimate Focus (GE), a PlanApo 60�/1.42 NA or OLY 100�/1.40 NA oil-

immersion objective and a DV Elite CMOS Camera. Super-resolution microscopy images were col-

lected on the Leica VT-iSIM microscope or the Leica SP8 confocal with Lightning. Images were proc-

essed on ImageJ, Adobe Photoshop CC, or Adobe Illustrator CC.

Binning categories for population analyses were based on preliminary analyses of population dis-

tribution of puncta numbers/animal in wild type, and mutants with excess puncta (tax-2) or reduced

puncta mutants (ced-10, psr-1). Preliminary analyses of these strains suggested that the bin intervals

(0, 1–9, or 10+ puncta) are the most robust, conservative, and rapid assessment of phenotypes.

Higher than 10 puncta/cell were not readily resolved without post-processing and therefore binned

together in population scores. Some genotypes were selected for further post-hoc single-cell puncta

quantification analyses. For this, glia puncta numbers were quantified using Analyze Particles func-

tion in ImageJ on deconvolved images. Individual puncta size measurements were done on yz

orthogonal rendering of optical sections using 3D objects counter plug-in in ImageJ.

Electron microscopy
Adult hermaphrodites were fixed in 0.8% glutaraldehyde�0.8% osmium tetroxide�0.1 M cacodylate

buffer (pH 7.4) for 1 hr at 4˚C in the dark, and then quickly rinsed several times with 0.1 M cacodylate

buffer. Animal heads were decapitated and fixed in 1% osmium tetroxide�0.1 M cacodylate buffer

overnight at 4˚C, quickly rinsed several times in 0.1 M cacodylate buffer, and dehydrated through a

graded ethanol series. The samples were then embedded in Eponate 12 resin (Ted Pella, Inc, Redd-

ing, CA) and polymerized overnight in a 60˚C oven. 70 nm ultrathin serial sections were collected

onto pioloform-coated slot grids from the anterior tip of the animal to a distance of approximately 7

mm. Sections were examined on a JEOL 1400 TEM (JEOL, Tokyo, Japan) at an accelerating voltage

of 120 kV. Images were acquired with a Gatan Rio 4k � 4k detector (Gatan, Inc, Pleasanton, CA).

Microvilli size measurements were done with ImageJ Measure Function on electron micrograph thin

sections.

Statistical analyses
Population puncta scoring was statistically analyzed using Fisher’s exact statistical test in GraphPad

Prism 8. Puncta images were quantified using Analyze Particles function in Image J and analyzed

with a one-Way ANOVA with multiple-comparison test in GraphPad Prism 8.

Chemogenetic silencing and RNAi
For chemogenetic silencing assays, 10 mM histamine (Sigma, catalog # H7250) was added to NGM

agar plates. L4 larval stage transgenic worms expressing HisCl1 in AFD were grown for 24 hr on

either normal or histamine plates and assayed as day 1 adults (Pokala et al., 2014). Plasmids

expressing double-stranded RNA were obtained from the Ahringer Library (Fraser et al., 2000;

Kamath and Ahringer, 2003). The L4440 empty vector was used as negative control. RNAi was per-

formed by feeding synchronized L1 animals RNAi bacteria (Timmons, 2004). L4 larva were moved to

a fresh plate with RNAi bacteria and scored 24 hr later for glial puncta (nsIs483) or AFD–NRE defects

(nsIs645).
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Animal behavior assays
Thermotaxis assays were performed on a 17�26˚C linear temperature gradient, designed as previ-

ously described (Hedgecock and Russell, 1975; Mori and Ohshima, 1995). Animals were synchro-

nized and the staged progeny were tested on the first day of adulthood. Briefly, animals were

washed twice with S-Basal and spotted onto the center of a 10 cm plate warmed to room tempera-

ture and containing 12 ml of NGM agar. The plate was placed onto the temperature gradient (17–

26˚C) with the addition of 5 ml glycerol to its bottom to improve thermal conductivity. At the end of

45 min, the plate was inverted over chloroform to kill the animals and allow easy counting of animals

in each bin. The plates have an imprinted 6 � 6 square pattern, which formed the basis of the six

temperature bins. Each data point is the average of 3–8 assays with ~150 worms/assay.
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Appendix 1

Appendix 1—key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background
(Caenorhabditis
elegans)

nsIs481 This paper Singhvi Lab
Database ID:
OS8556

[20 ng/ml 02097061181003035 C08 (Pgcy-8:
gcy-8:GFP) + Pelt-2:mCherry]. Integration of
nsEx3945. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsIs482 This paper Singhvi Lab
Database ID:
OS8557

[20 ng/ml 02097061181003035 C08 (Pgcy-8:
gcy-8:GFP) + Pelt-2:mCherry]. Integration of
nsEx3945. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsIs483 X This paper Singhvi Lab
Database ID:
OS8558

[20 ng/ml 02097061181003035 C08 (Pgcy-8:
gcy-8:GFP) + Pelt-2:mCherry]. Integration of
nsEx3945. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsIs484 This paper Singhvi Lab
Database ID:
OS8502

[20 ng/ml 02097061181003035 C08 (Pgcy-8:
gcy-8:GFP) + Pelt-2:mCherry]. Integration of
nsEx3945. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsIs645 IV This paper Singhvi Lab
Database ID:
OS10884

[50 ng/ml pAS322 (Psrtx-1B:STRX-1:GFP) +
Punc-122:RFP]. Integration of nsEx4078.
Request from corresponding author.

Strain, strain
background (C.
elegans)

nsIs647 This paper Singhvi Lab
Database ID:
OS10805

[50 ng/ml pAS322 (Psrtx-1B:STRX-1:GFP) +
Punc-122:RFP]. Integration of nsEx4078.
Request from corresponding author.

Strain, strain
background(C.
elegans)

dnaIs1 This paper Singhvi Lab
Database ID:
ASJ160

[50 ng/ml pAS540 (Psrtx-1B:HisCl1:SL2:GFP) +

elt-2:mCherry]. Integration of nsEx5340.
Request from corresponding author.

Strain, strain
background(C.
elegans)

dnaIs2 This paper Singhvi Lab
Database ID:
ASJ161

[50 ng/ml pAS540 (Psrtx-1B:HisCl1:SL2:GFP) +

elt-2:mCherry]. Integration of nsEx5340.
Request from corresponding author.

Strain, strain
background (C.
elegans)

dnaIs3 This paper Singhvi Lab
Database ID:
ASJ271

[50 ng/ml pAS540 (Psrtx-1B:HisCl1:SL2:GFP) +

elt-2:mCherry]. Integration of nsEx5340.
Request from corresponding author.

Strain, strain
background (C.
elegans)

dnaIs4 This paper Singhvi Lab
Database ID:
ASJ280

[50 ng/ml pAS540 (Psrtx-1B:HisCl1:SL2:GFP) +

elt-2:mCherry]. Integration of nsEx5340.
Request from corresponding author.

Strain, strain
background (C.
elegans)

dnaIs7 This paper Singhvi Lab
Database ID:
ASJ360

[5 ng/ml pAS275 (PF53F4.13:CED-10:SL2:
mCherry) + Pmig-24:Venus]. Integration of
nsEx5365. Request from corresponding
author.

Strain, strain
background (C.
elegans)

dnaIs8 This paper Singhvi Lab
Database ID:
ASJ359

[5 ng/ml pAS275 (PF53F4.13:CED-10:SL2:
mCherry) + Pmig-24:Venus]. Integration of
nsEx5365. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsIs143X Procko et al.,
2011

OS9176 PF16F9.3:DsRed.

Strain, strain
background (C.
elegans)

nsIs109 Bacaj et al.,
2008b

OS1932 PF16F9.3:DTA(G53E).

Strain, strain
background (C.
elegans)

nsEx3944 Singhvi et al.,
2016

Singhvi Lab
Database ID:
OS7171

[20 ng/ml 02097061181003035 C08 (Pgcy-8:
gcy-8:GFP) + Pelt-2:mCherry]. Request from
either corresponding author or Dr. Shai
Shaham (The Rockefeller University, USA).

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background (C.
elegans)

nsEx3945 Singhvi et al.,
2016

Singhvi Lab
Database ID:
OS7172

[20 ng/ml 02097061181003035 C08 (Pgcy-8:
gcy-8:GFP) + Pelt-2:mCherry]. Request from
either corresponding author or Dr. Shai
Shaham (The Rockefeller University, USA).

Strain, strain
background (C.
elegans)

nsEx3946 Singhvi et al.,
2016

Singhvi Lab
Database ID:
OS7173

[20 ng/ml 02097061181003035 C08 (Pgcy-8:
gcy-8:GFP) + Pelt-2:mCherry]. Request from
either corresponding author or Dr. Shai
Shaham (The Rockefeller University, USA).

Strain, strain
background (C.
elegans)

nsEx3947 Singhvi et al.,
2016

Singhvi Lab
Database ID:
OS7174

[20 ng/ml 02097061181003035 C08 (Pgcy-8:
gcy-8:GFP) + Pelt-2:mCherry]. Request from
either corresponding author or Dr. Shai
Shaham (The Rockefeller University, USA).

Strain, strain
background (C.
elegans)

nsEx4733 This paper Singhvi Lab
Database ID:
OS9078

[20 ng/ml 9735267524753001 E03 (Pgcy-18:
gcy-18:GFP) + Pelt-2:mCherry]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

nsEx4734 This paper Singhvi Lab
Database ID:
OS9079

[20 ng/ml 9735267524753001 E03 (Pgcy-18:
gcy-18:GFP) + Pelt-2:mCherry]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

nsEx4857 This paper Singhvi Lab
Database ID:
OS9406

[20 ng/ml 9735267524753001 E03 (Pgcy-18:
gcy-18:GFP) + Pelt-2:mCherry]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

nsEx4763 This paper Singhvi Lab
Database ID:
OS9164

[20 ng/ml 9735267524753001 E03 (Pgcy-18:
gcy-18:GFP) + Pelt-2:mCherry]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

nsEx4803 This paper Singhvi Lab
Database ID:
OS9276

[20 ng/ml 6523378417130642 E08 (Pgcy-23:
gcy-23:GFP) + Pelt-2:mCherry]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

nsEx4765 This paper Singhvi Lab
Database ID:
OS9166

[20 ng/ml 6523378417130642 E08 (Pgcy-23:
gcy-23:GFP) + Pelt-2:mCherry]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

nsEx4392 This paper Singhvi Lab
Database ID:
OS8257

[20 ng/ml pAS428 (Psrtx-1B:DYF-11:GFP) +
Pelt-2:mCherry]. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsEx4393 This paper Singhvi Lab
Database ID:
OS8258

[20 ng/ml pAS428 (Psrtx-1B:DYF-11:GFP) +
Pelt-2:mCherry]. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsEx4394 This paper Singhvi Lab
Database ID:
OS8259

[20 ng/ml pAS428 (Psrtx-1B:DYF-11:GFP) +
Pelt-2:mCherry]. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsEx4446 This paper Singhvi Lab
Database ID:
OS8330

[20 ng/ml pAS428 (Psrtx-1B:DYF-11:GFP) +
Pelt-2:mCherry]. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsEx4051 This paper Singhvi Lab
Database ID:
OS7443

[50 ng/ml pAS322 (Psrtx-1B:SRTX-1:GFP) +
Punc-122:RFP]. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsEx4077 This paper Singhvi Lab
Database ID:
OS7541

[50 ng/ml pAS322 (Psrtx-1B:SRTX-1:GFP) +
Punc-122:RFP]. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsEx4078 This paper Singhvi Lab
Database ID:
OS7542

[50 ng/ml pAS322 (Psrtx-1B:SRTX-1:GFP) +
Punc-122:RFP]. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsEx4570 This paper Singhvi Lab
Database ID:
OS8598

[25 ng/ml pAS447 (Psrtx-1:EGL-1) + Pmig-24:
Venus]. Request from corresponding author.

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background (C.
elegans)

nsEx4616 This paper Singhvi Lab
Database ID:
OS8767

[25 ng/ml pAS447 (Psrtx-1:EGL-1) + Pmig-24:
Venus]. Request from corresponding author.

Strain, strain
background (C.
elegans)

nsEx4688 This paper Singhvi Lab
Database ID:
OS8970

[25 ng/ml pAS447 (Psrtx-1:EGL-1) + Pmig-24:
Venus]. Request from corresponding author.

Strain, strain
background (C.
elegans)

nsEx5266 This paper Singhvi Lab
Database ID:
OS10640

[50 ng/ml pAS540 (Psrtx-1:HisCl1:SL2:GFP) +
Pelt-2:mCherry]. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsEx5340 This paper Singhvi Lab
Database ID:
OS10735

[50 ng/ml pAS540 (Psrtx-1:HisCl1:SL2:GFP) +
Pelt-2:mCherry]. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsEx5356 This paper Singhvi Lab
Database ID:
OS10761

[50 ng/ml pAS540 (Psrtx-1:HisCl1:SL2:GFP) +
Pelt-2:mCherry]. Request from corresponding
author.

Strain, strain
background (C.
elegans)

nsEx5365 This paper Singhvi Lab
Database ID:
OS10781

[5 ng/ml pAS275 (PF53F4.13:CED-10B:SL2:
mCherry) + Pmig-24:Venus]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

nsEx5381 This paper Singhvi Lab
Database ID:
OS10826

[5 ng/ml pAS275 (PF53F4.13:CED-10B:SL2:
mCherry) + Pmig-24:Venus]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

nsEx5382 This paper Singhvi Lab
Database ID:
OS10877

[5 ng/ml pAS275 (PF53F4.13:CED-10B:SL2:
mCherry) + Pmig-24:Venus]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

dnaEx1 This paper Singhvi Lab
Database ID:
ASJ06

[5 ng/ml pASJ11-pSAR1 (PF53F4.13:CED-12B:
SL2:mCherry) + Punc-122:RFP]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

dnaEx2 This paper Singhvi Lab
Database ID:
ASJ07

[5 ng/ml pASJ11-pSAR1 (PF53F4.13:CED-12B:
SL2:mCherry) + Punc-122:RFP]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

dnaEx3 This paper Singhvi Lab
Database ID:
ASJ08

[5 ng/ml pASJ11-pSAR1 (PF53F4.13:CED-12B:
SL2:mCherry) + Punc-122:RFP]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

dnaEx19 This paper Singhvi Lab
Database ID:
ASJ104

[5 ng/ml pASJ23-pSAR7 (PF53F4.13:PSR-1C:
SL2:mCherry) + Pmig-24:Venus]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

dnaEx30 This paper Singhvi Lab
Database ID:
ASJ143

[5 ng/ml pASJ23-pSAR7 (PF53F4.13:PSR-1C:
SL2:mCherry) + Pmig-24:Venus]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

dnaEx33 This paper Singhvi Lab
Database ID:
ASJ147

[5 ng/ml pASJ23-pSAR7 (PF53F4.13:PSR-1C:
SL2:mCherry) + Pmig-24:Venus]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

dnaEx29 This paper Singhvi Lab
Database ID:
ASJ142

[5 ng/ml pASJ29-pSAR8 (PF53F4.13:CED-
10BG12V:SL2:mCherry) + Punc-122:RFP].
Request from corresponding author.

Strain, strain
background (C.
elegans)

dnaEx51 This paper Singhvi Lab
Database ID:
ASJ218

[5 ng/ml pASJ37 (pSAR11) (PF53F4.13:CED-
10BT17N:SL2:mCherry) + Punc-122:RFP].
Request from corresponding author.

Strain, strain
background (C.
elegans)

dnaEx57 This paper Singhvi Lab
Database ID:
ASJ225

[5 ng/ml pASJ37 (pSAR11) (PF53F4.13:CED-
10BT17N:SL2:mCherry) + Punc-122:RFP].
Request from corresponding author.

Strain, strain
background (C.
elegans)

dnaEx59 This paper Singhvi Lab
Database ID:
ASJ230

[5 ng/ml pASJ37 (pSAR11) (PF53F4.13:CED-
10BT17N:SL2:mCherry) + Punc-122:RFP].
Request from corresponding author.
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background (C.
elegans)

nsEx5268 This paper Singhvi Lab
Database ID:
OS10642

[5 ng/ml pAS247 (PF53F4.13: WSP-1:SL2:
mCherry) + Pmig-24:Venus]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

nsEx5363 This paper Singhvi Lab
Database ID:
OS10779

[5 ng/ml pAS247 (PF53F4.13:WSP-1:SL2:
mCherry) + Pmig-24:Venus]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

nsEx5380 This paper Singhvi Lab
Database ID:
OS10825

[5 ng/ml pAS247 (PF53F4.13:WSP-1:SL2:
mCherry) + Pmig-24:Venus]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

dnaEx160 This paper Singhvi Lab
Database ID:
ASJ488

[45 ng/ml pASJ114-pSAR35 (Psrtx-1B:TAT-1A)
+ Punc-122:RFP]. Request from corresponding
author.

Strain, strain
background (C.
elegans)

dnaEx162 This paper Singhvi Lab
Database ID:
ASJ498

[45 ng/ml pASJ114-pSAR35 (Psrtx-1B:TAT-1A)
+ Punc-122:RFP]. Request from corresponding
author.

Strain, strain
background (C.
elegans)

dnaEx70 This paper Singhvi Lab
Database ID:
ASJ266

[2.5 ng/ml pASJ56-pSAR18 (PF53F4.13:GFP:
PSR-1C) + Punc-122:RFP]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

dnaEx71 This paper Singhvi Lab
Database ID:
ASJ267

[2.5 ng/ml pASJ56-pSAR18 (PF53F4.13:GFP:
PSR-1C) + Punc-122:RFP]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

dnaEx74 This paper Singhvi Lab
Database ID:
ASJ273

[2.5 ng/ml pASJ56-pSAR18 (PF53F4.13:GFP:
PSR-1C) + Punc-122:RFP]. Request from
corresponding author.

Strain, strain
background (C.
elegans)

Wild type CGC Singhvi Lab
Database ID:
N2

Reference strain.

Strain, strain
background (C.
elegans)

tax-2(p691) I CGC Singhvi Lab
Database ID:
PR691

Strain, strain
background (C.
elegans)

ced-12
(n3261) I

CGC Singhvi Lab
Database ID:
MT11068

Strain, strain
background (C.
elegans)

ced-12(k149)
I

CGC Singhvi Lab
Database ID:
NF87

Strain, strain
background (C.
elegans)

psr-1(tm469)
I

CGC Singhvi Lab
Database ID:
CU1715

Strain, strain
background (C.
elegans)

ced-1
(e1754) I

CGC Singhvi Lab
Database ID:
CB3261

Strain, strain
background (C.
elegans)

ced-1
(e1735) I

CGC Singhvi Lab
Database ID:
CB3203

Strain, strain
background (C.
elegans)

unc-73(e936)
I

CGC Singhvi Lab
Database ID:
CB936

Strain, strain
background (C.
elegans)

scrm-1
(tm805) I

CGC Singhvi Lab
Database ID:
CU2945

Strain, strain
background (C.
elegans)

ttr-52
(tm2078) III

NBRP Singhvi Lab
Database ID:
FX002078

Kang et al., 2012.
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background (C.
elegans)

ced-6
(n1813) III

CGC Singhvi Lab
Database ID:
MT4433

Strain, strain
background (C.
elegans)

tat-1
(tm1034) III

NBRP Singhvi Lab
Database ID:
FX001034

Darland-Ransom et al., 2008.

Strain, strain
background (C.
elegans)

tax-4(p678)
III

CGC Singhvi Lab
Database ID:
PR678

Strain, strain
background (C.
elegans)

ced-7
(n2094) III

CGC Singhvi Lab
Database ID:
MT8886

Strain, strain
background (C.
elegans)

ver-1
(ok1738) III

CGC Singhvi Lab
Database ID:
VC1263

Consortium, C.e.D.M, 2012.

Strain, strain
background (C.
elegans)

ver-2(ok897)
III

CGC Singhvi Lab
Database ID:
RB983

Consortium, C.e.D.M, 2012.

Strain, strain
background (C.
elegans)

ina-1
(gm144) III

CGC Singhvi Lab
Database ID:
NG144

Strain, strain
background (C.
elegans)

ced-10
(n3246)IV

CGC Singhvi Lab
Database ID:
MT9958

Strain, strain
background (C.
elegans)

ced-10
(n1993) IV

CGC Singhvi Lab
Database ID:
MT5013

Strain, strain
background (C.
elegans)

ced-2
(e1752) IV

CGC Singhvi Lab
Database ID:
CB3257

Strain, strain
background (C.
elegans)

ced-5
(n1812) IV

CGC Singhvi Lab
Database ID:
MT4434

Strain, strain
background (C.
elegans)

cng-3(jh113)
IV

CGC Singhvi Lab
Database ID:
KJ462

Strain, strain
background (C.
elegans)

ttx-1(p767) V CGC Singhvi Lab
Database ID:
PR767

Strain, strain
background (C.
elegans)

osm-6(p811)
V

CGC Singhvi Lab
Database ID:
PR811

Strain, strain
background (C.
elegans)

dyf-11
(mn392) X

CGC Singhvi Lab
Database ID:
SP1713

Strain, strain
background (C.
elegans)

ced-8
(n1891) X

CGC Singhvi Lab
Database ID:
MT5006

Strain, strain
background (C.
elegans)

ver-3(ok891)
X

CGC Singhvi Lab
Database ID:
VC610

Consortium, C.e.D.M, 2012.

Strain, strain
background (C.
elegans)

ver-4
(ok1079) X

CGC Singhvi Lab
Database ID:
RB1100

Consortium, C.e.D.M, 2012.
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers Additional information

Strain, strain
background (C.
elegans)

egl-15(n484)
X

CGC Singhvi Lab
Database ID:
OS10586

Genetic reagent
(Escherichia coli)

pat-2 RNAi Kamath and
Ahringer,
2003

Singhvi Lab
Database ID:
pASJ_RNAi_1D1

Ahringer RNAi library: WBGene00018832.
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