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Phagocytosis of dying cells is critical in development and 
immunity1–3. Although proteins for recognition and engulf-
ment of cellular debris following cell death are known4,5, 
proteins that directly mediate phagosome sealing are unchar-
acterized. Furthermore, whether all phagocytic targets are 
cleared using the same machinery is unclear. Degeneration of 
morphologically complex cells, such as neurons, glia and mela-
nocytes, produces phagocytic targets of various shapes and 
sizes located in different microenvironments6,7. Thus, such 
cells offer unique settings to explore engulfment programme 
mechanisms and specificity. Here, we report that dismantling 
and clearance of a morphologically complex Caenorhabditis 
elegans epithelial cell requires separate cell soma, proximal 
and distal process programmes. Similar compartment-spe-
cific events govern the elimination of a C. elegans neuron. 
Although canonical engulfment proteins drive cell soma clear-
ance, these are not required for process removal. We find that 
EFF-1, a protein previously implicated in cell–cell fusion8, spe-
cifically promotes distal process phagocytosis. EFF-1 localizes 
to phagocyte pseudopod tips and acts exoplasmically to drive 
phagosome sealing. eff-1 mutations result in phagocytosis 
arrest with unsealed phagosomes. Our studies suggest uni-
versal mechanisms for dismantling morphologically complex 
cells and uncover a phagosome-sealing component that pro-
motes cell process clearance.

The Caenorhabditis elegans tail-spike cell (TSC) is a morpho-
logically complex cell that extends a microtubule-laden process 
to the animal’s tail tip. Wrapped around the TSC process is the 
hyp10 epithelial cell, which also extends posteriorly (Fig. 1a–d and 
Supplementary Fig. 1a). Ectopic TSC generation results in a forked tail9  
(n =  5; Supplementary Fig. 1b,c), whereas early TSC ablation 
perturbs tail morphogenesis (five out of five ablated animals; 
Supplementary Fig. 1d,e). Thus, like hyp10, the TSC has a key role 
in C. elegans tail morphogenesis.

Once tail formation is complete, the TSC dies through transcrip-
tional induction of the main C. elegans caspase, CED-3 (ref. 10). By 
following myristoylated green fluroscent protein (GFP) expressed 
in the TSC, we found that a strong ced-3 loss-of-function mutation 
promotes TSC soma and process persistence in larvae10 (Fig. 1i and 
Supplementary Fig. 1d). However, only 30% of animals carrying a 
weak ced-3 allele exhibit TSC persistence. Of these animals, 24% 
exhibit a fully intact cell, 30% have an intact cell soma alone and 
18% exhibit an intact cell process alone. The remaining animals dis-
play TSCs at various states of degeneration (Fig. 1a–i). These obser-
vations demonstrate that CED-3 caspase drives cell process and cell 
soma degeneration independently.

To examine this idea more closely, we used myristoylated GFP 
to follow TSC death dynamics in 3-fold stage embryos by taking 
still images of different embryos at different time points (n >  50). 
We find that degeneration begins with beading of the proximal 
cell process and rounding of the cell soma, followed by the appear-
ance of a varicosity in the distal process. Clearance of the proxi-
mal process ensues, followed by distal process retraction into the 
distal varicosity (Fig. 1j–q). The TSC body and the distal varicos-
ity are then engulfed and cleared by different neighbouring cells, 
with hyp10 engulfing the varicosity (see below). To confirm this 
event sequence, we imaged 14 individual animals over time using 
a custom-built inverted selective plane illumination microscope 
(iSPIM), which acquires rapid image volumes without motion-
induced blurring11. We found the same sequence of events occur-
ring over a period of about 170 minutes (Supplementary Video 1). 
Corroborating these results, serial-section transmission electron 
microscopy of a 3-fold embryo revealed proximal beading and dis-
tal varicosity formation (Fig. 1v and Supplementary Video 2). We 
also imaged a myristoylated mCherry reporter and obtained similar 
results (Supplementary Fig. 1f–i). Thus, independent morphologi-
cal and molecular events dismantle the TSC soma, proximal process 
and distal process.

To determine whether similar degeneration dynamics occur 
in other morphologically complex cells, we examined the sex-
specific CEMVL neuron that dies in hermaphrodites, but survive 
in males12. As embryonic CEMVL reporters are not known, we 
labelled the cells using our recently developed gene-induction sys-
tem, in which CEMVL precursor cells, in animals carrying a heat-
shock promoter::mCherry construct, are heated with an infrared 
laser for cell-specific labelling13. Time-lapse movies reveal that 
once generated, the CEMVL neuron extends a dendrite towards 
the nose tip. Dismantling of this axon-less neuron then occurs in 
a sequence resembling that of TSC dismantling (n =  6; Fig. 1r–u 
and Supplementary Video 3). Thus, two different morphologically 
complex cell types use common spatially restricted programmes for 
death and clearance. Importantly, these studies also shed light on 
dendrite destruction, a phenomenon much less understood than 
axon degeneration14.

We next wondered whether the compartment-specific clearance 
events we uncovered correspond to distinct molecular programmes. 
As imaging of CEMVL neurons is cumbersome, we pursued these 
studies in the TSC. We found that mutations affecting CED-1/
Draper/MEGF10 and other apoptotic corpse engulfment regulators 
disrupt TSC soma clearance, with loss of CED-5/DOCK180 having 
the strongest effect15,16 (Fig. 2a,b). However, single mutants in these 
genes, or a ced-1;ced-5 double mutant have only minor defects in 
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proximal or distal process clearance (Fig. 2c). Mutations in sand-1/
MON1, which is required for phagosome maturation17, block cell 
soma and distal process clearance, but have no effects on proximal 

process elimination (Fig. 2d–f and Supplementary Video 4). These 
results suggest that distinct molecular programmes drive TSC soma, 
proximal process and distal process dismantling (Fig. 2g), and that 
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Fig. 1 | The TSC and CEM neurons undergo a similar degeneration sequence. a–d, TSC in the comma stage (a), 1.5-fold (b), 2-fold (c) and 3-fold  
(d) embryos and its association with hyp10. n =  5 biologically independent animals each with similar results. TSCpro, tail-spike cell promoter; myrGFP, 
myristoylated GFP. e–h, ced-3(n2427) mutants exhibit an intact cell (e), persistent soma only (f), persistent process only (g) or intermediate degeneration 
(other) (h). n =  10 biologically independent animals each with similar results. i, TSC persistence in ced-3 mutants. Data are mean ±  s.e.m. Statistics: two-
tailed unpaired t-test. For individual P values, see Supplementary Table 2. Numbers inside/outside bars are the total animals scored per genotype. Data are 
from three independent scoring experiments. n =  sample sizes for ced-3(n2427): n =  157 (other: 42, process only: 31, soma only: 47, intact: 37). j, TSC in 
3-fold embryo. k, TSC soma rounding and proximal process beading. l,m, Distal process varicocity (white arrow). n =  10 biologically independent animals 
each. r–u, Stills from movies showing CEM death. Yellow dashed line, cell outline. Time in hours:minutes post-fertilization: 07:40 (r), 08:05 (s), 08:15 
(t) and 08:30 (u). n–q, Schematics for j–m and r–u. n =  6 biologically independent animals each. d, distal process; p, proximal process; s, soma. v, Three 
dimensional reconstruction of a degenerating TSC in an eff-1(ns634) animal. TSC death stages in this mutant are similar to WT (main text; Supplementary 
Video 5). Reconstruction is based on Supplementary Video 2. Statistics source data are provided in Supplementary Table 2.
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additional genes promoting cell soma and process clearance remain 
to be identified.

To seek such genes, we mutagenized C. elegans expressing myris-
toyl-GFP in the TSC, and screened through ~27,000 F2 progeny for 
mutants with persisting TSC fragments. In addition to mutations in 
ced-3/caspase and sand-1/MON1, we isolated two mutants, ns627 
and ns634, that exhibit process clearance defects (Fig. 3a,b) but do 
not affect soma removal (n >  100 each). Mutant L1 larvae do not 
exhibit other persistent cell corpses seen in apoptotic engulfment 
mutants18 (n >  70).

Using whole-genome sequencing, single-nucleotide polymor-
phism mapping and transformation rescue, we demonstrated 

that both mutants harbour causal lesions in the gene eff-1, which 
encodes a transmembrane protein with structural homology 
to viral class II fusion proteins, that promote cell–cell fusion8. 
Confirming this, animals homozygous for the canonical eff-1(hy21) 
allele also exhibit TSC clearance defects (Fig. 3b). Both mutants we 
isolated have animal morphology defects resembling those of eff-
1(hy21) mutants, suggesting that they also lack cell fusion events. 
Consistent with this, both alleles perturb the EFF-1 extracellular 
domain (Fig. 3c).

To determine which part of the TSC process persists in eff-1 
mutants, we imaged TSC death using iSPIM. Although cell soma 
degradation, proximal process degradation and distal process 
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retraction were unaffected, distal process varicosity clearance was 
blocked (Supplementary Video 5).

To determine where EFF-1 functions, we first examined its 
expression pattern. In ced-3(n717)-mutant larvae, in which a live 
TSC persists, an eff-1 promoter::mCherry reporter is expressed in 
hyp10, but not in the TSC (Fig. 3d). Thus, EFF-1 probably functions 
in the engulfing cell. Supporting this, expression of an eff-1 comple-
mentary DNA using a TSC-specific promoter fails to rescue distal 
process clearance defects of eff-1 mutants; however, expression of 
the same cDNA using a hyp10-expressed eff-1 promoter fragment 

rescues these defects (Fig. 3e). Furthermore, in animals carrying an 
unstable extrachromosomal array containing the eff-1 locus, array 
presence/absence in hyp10 strongly correlates with distal fragment 
clearance/persistence (Fig. 3f). Thus, EFF-1 functions in the hyp10 
engulfing cell for TSC distal process clearance (Fig. 2g).

During embryogenesis, two hyp10 cells fuse to form the hyp10 
syncytium, which engulfs the TSC distal process. As EFF-1 controls 
cell fusion, distal process clearance defects in eff-1 mutants may 
reflect hyp10 cell–cell fusion failure. Arguing against this, how-
ever, eff-1 mutants have fully penetrant tail morphology defects, 
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probably resulting from cell–cell fusion defects; yet, we found rare 
eff-1(ns634);hyp10p::eff-1 animals in which tail-tip defects were res-
cued but distal process engulfment still failed, suggesting that hyp10 
cell–cell fusion and distal fragment clearance are separable events. 
To test this directly, we followed hyp10 cell–cell fusion using the 
AJM-1::GFP reporter, labelling junctions between unfused cells19. 
One-hundred per cent of eff-1-mutant animals exhibit hyp10 cell–
cell fusion defects; however, only 40% have TSC clearance defects 
(n =  48) (Supplementary Fig. 2b,c). Thus, blocking hyp10 cell–cell 
fusion is not sufficient to block distal process engulfment. To fur-
ther address this issue, we subjected eff-1(ns634) mutants, which 
carry heat-inducible eff-1 cDNA transgenes, to elevated tempera-
tures and assessed distal process clearance and hyp10 cell–cell 
fusion. Although distal fragments were cleared within 2 hours of 
heat exposure, cell fusion was restored more slowly (Fig. 3g,h), 
beginning only 4–6 hours later. Together, these studies suggest that 
hyp10 cell–cell fusion defects alone cannot explain TSC distal frag-
ment clearance failure. Thus, eff-1 probably has direct roles in distal 
process clearance.

EFF-1 could be required for distal process varicosity recognition 
by hyp10, phagosome sealing, phagosome maturation or lysosomal 
degradation. We found that the varicosity is usually surrounded by 
hyp10 pseudopods in eff-1 mutants; however, gaps are often seen in 
optical cross-sections (Fig. 4a and Supplementary Video 6), suggest-
ing that, although the varicosity is being recognized, it is not fully 
internalized. Electron micrographs of an eff-1(ns634) mutant support 
the idea that phagosome sealing is defective in eff-1 mutants (Fig. 4b).

To confirm these results, we examined the localization of phago-
some-associated proteins around the distal fragment remnant. We 
found that hyp10-expressed mKate2 fluorescent protein fused to 
the pleckstrin homology (PH) domain of phospholipase C-δ , which 
marks unsealed phagosomes20, is enriched around the TSC distal pro-
cess varicosity (eight out of eight animals; Fig. 4c and Supplementary 
Video 7). The closed phagosome marker GFP::2xFYVE20 is gener-
ally not enriched (19 out of 20 animals; Supplementary Fig. 3a–c 
and Supplementary Video 8). A marker for mature phagosomes, 
RAB-7 (ref. 21), also does not localize around the distal process rem-
nant (Supplementary Fig. 3d–f and Supplementary Video 9), nor 
does LAAT-1::mCherry, a phagolysosome marker20 (Supplementary  
Fig. 3g–i and Supplementary Video 10). Thus, the distal process 
fragment resides in an unsealed phagosome.

To directly test whether the distal process phagosome is open 
in eff-1 mutants, we reasoned that its interior should be continu-
ous with the extracellular milieu. A fluorescent molecule expressed 
in this milieu should penetrate the phagosome only if the organ-
elle is open (Supplementary Fig. 4e,f). Thus, we generated eff-
1(ns634);cup-2(ar506) mutants expressing secreted GFP (ssGFP) 
from body muscle using the myo-3 promoter22. In wild-type (WT) 
animals, ssGFP is taken up by coelomocyte scavenger cells; however, 
cup-2(ar506) blocks this uptake, allowing ssGFP extracellular accu-
mulation. cup-2(ar506) mutants do not have TSC clearance defects 
(n =  10). Most eff-1(ns634);cup-2(ar506); myo-3p::ssGFP animals 
exhibit GFP fluorescence between the phagosome membrane and 
the TSC remnant, suggesting access to the phagosome at some 
point in time (Fig. 4d, Supplementary Fig. 4a–d and Supplementary 
Video 11). We photobleached the signal surrounding the TSC rem-
nant and assessed whether fluorescence recovered (Supplementary 
Fig. 4). Signal recovery occurred over a period of 5 seconds (19 ani-
mals) to 30 minutes (11 animals) in most animals observed (n =  38; 
Fig. 4d–f and Supplementary Videos 12,13), strongly supporting 
the notion that the mutant phagosome is unsealed. We speculate 
that fluorescence recovery time may correlate with phagosome gap 
size. As a control, we looked at sand-1(or522);cup-2(ar506) mutants 
(n =  45), in which a sealed, persisting phagosome is expected. Forty-
four animals had no GFP accumulation around the TSC, probably 
because phagosomes were sealed before ssGFP expression. One 

animal exhibited GFP accumulation (Supplementary Fig. 4g–r and 
Supplementary Video 14), but GFP fluorescence did not recover 
following photobleaching, suggesting that the phagosome is closed 
(Supplementary Fig. 4f).

Several C. elegans proteins are implicated in phagosome sealing, 
including MTM-1/myotubularin, OCRL-1/inositol 5-phospha-
tase, LST-4/SNX9, PIKI-1/PI3K and DYN-1/dynamin20. Dynamin 
proteins also have roles in intracellular scission of endocytic ves-
icles, although dynamin-independent endocytosis has been docu-
mented23. However, mutants in these genes have no effect on distal 
process removal (Supplementary Table 1). We also examined DYN-
1::GFP localization using iSPIM in WT animals (n =  3 movies). 
Although DYN-1::GFP enrichment was seen around the cell soma, 
enrichment was not observed around the distal process fragment. 
Thus, phagosome sealing during distal process engulfment may be 
independent of known sealing components.

EFF-1 roles in cell fusion have been extensively characterized. 
Like viral fusion proteins, the expression of EFF-1 alone is sufficient 
for cell–cell fusion in heterologous systems24, which suggests that 
it drives membrane rearrangements without additional proteins. 
Such an independent function could explain why the standard 
phagosome-sealing machinery is dispensable for TSC distal process 
clearance. We noted that eff-1(ns634) mutants, which contain an 
R77K mutation in the EFF-1 extracellular domain, are cell-fusion 
defective (Fig. 3h). Furthermore, EFF-1(R77K) protein localizes 
to the plasma membrane and vesicular structures (Supplementary 
Fig. 2d), like WT EFF-1. Thus, EFF-1 fusogenic function seems to 
be required for phagosome sealing. Supporting this notion, neither 
EFF-1(R77K) nor EFF-1(G316E) (which is also fusion defective and 
properly localized; B. Podbilewicz, personal communication) rescue 
the distal process clearance defect of eff-1(ns634) mutants (Fig. 4h  
and Supplementary Fig. 2a).

If indeed EFF-1 promotes phagosome sealing through autocel-
lular fusion, we would expect the protein to localize to the con-
vergence site of phagosome arms. To test this, we examined the 
localization of the EFF-1(T173A;N529D)::GFP fusion-defective 
protein, which shows proper localization in other contexts25,26, in an 
eff-1(ns634) mutant. In 14 out of 15 animals, EFF-1 localized at the 
TSC remnant. Strikingly, in animals where a phagosome opening 
was seen, EFF-1 localized to phagosome arm tips (five out of five; 
Fig. 4i–l and Supplementary Video 15), supporting the notion that 
EFF-1 promotes phagosome sealing through autocellular fusion.

We demonstrate here that different morphologically complex 
cell types, an epithelial cell and a neuron, undergo similar events 
dismantling and clearing their cell soma and processes. That two 
disparate C. elegans cell types are similarly eliminated raises the pos-
sibility that neurons and other morphologically complex cells are 
removed by related mechanisms across animals.

Different programmes seem to promote degeneration of distinct 
cellular domains, and dismantling initiation of each domain pro-
ceeds independently of the others. Cell somas undergo morphologi-
cal changes resembling apoptosis and require canonical apoptotic 
engulfment genes for clearance. Proximal processes undergo 
caspase-dependent fragmentation and beading, reminiscent of 
Wallerian degeneration. However, mutations in genes required 
for Wallerian degeneration in Drosophila and in mice, and for 
linker cell-type death (LCD) in C. elegans, do not block TSC proxi-
mal process degeneration and clearance6,27 (tir-1/Sarm or btbd-2;  
Supplementary Table 1), suggesting that an alternative molecular 
programme may underlie this form of degeneration. Distal pro-
cesses undergo retraction into a varicosity.

Separate clearance mechanisms also drive compartment removal, 
and we identify a key player, EFF-1/fusogen, that is required for the 
clearance of the distal process varicosity. Sealing of phagosomes and 
endocytic vesicles has been proposed to occur through the action 
of the protein dynamin28, or in the case of dynamin-independent  
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endocytosis, through bar-domain proteins29. Nonetheless, whether 
these factors are directly responsible for membrane fusion is debated. 
Unlike previously described membrane-scission factors, EFF-1 acts 

exoplasmically. Our studies are consistent with a model in which 
EFF-1 promotes autocellular fusion to generate a sealed phagosome 
in much the same way it promotes fusion of two cells (Fig. 4m,n). 
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Such EFF-1-mediated autocellular fusion is also proposed in axonal 
regeneration30,31, dendrite sculpting14,32 and in single-cell tube for-
mation33. EFF-1 is necessary and sufficient to drive cell fusion34 and 
could similarly be the only factor required for phagosome sealing.

Recently, an EFF-1-related protein, HAP2, was found to promote 
gamete fusion across several phyla35. As EFF-1, HAP2 and class II 
fusogens share limited sequence similarity, it is possible that yet 
uncharacterized but structurally related proteins in other eukary-
otes also promote phagosome sealing.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41556-018-0068-5.
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Methods
C. elegans methods. C. elegans strains were cultured using standard methods36 
and were grown at 20 °C. WT animals were the Bristol N2 subspecies. For most 
TSC experiments, one of three integrated reporters were used: nsIs435, nsIs528 
or nsIs685. Integration of extrachromosomal arrays was performed using UV and 
trioxalen (T2137, Sigma). For most experiments, animals were scored at 20 °C, with 
the exception of the ced-3 experiment, which was done at 25 °C.

Mutants. The list of mutant C. elegans strains used in this study is as follows:
LGI: ced-1(e1735), ced-1(n2089), cup-2(ar506), ced-12(ky149)
LGII: eff-1(hy21), aff-1(tm2214)
LGIII: ced-6(n2095), ced-7(n1982), tir-1(qd4)
 LGIV: ced-3(n717), ced-3(n2427), ced-5(n1812), ced-2(e1752), ced-10(n1993), 
sand-1(or522), sand-1(ok1963), lst-4(tm2423), tag-30/btbd-2(gk474281)
LGX: ced-8(n1891), dyn-1(ky51), piki-1(ok2346)

Germline transformation and rescue experiments. Germline transformation 
was carried out as previously described37. All plasmids were injected at between 
1 and 20 ng per µ l. pUC19 was used to adjust the DNA concentration of injection 
mixtures if necessary. All rescue experiments were done with myo-2p::GFP as a co-
injection marker along with cdh-3p::mCherry to label hyp10 and TSC.

Transgenes. The full list of transgenes is described in Supplementary Table 4. The 
full length or fragment of the aff-1 promoter was used to label the TSC. To label 
hyp10, either the cdh-3 promoter (embryo imaging only) or the eff-1 promoter (all 
other experiments) was used.

Primers and plasmid construction. Primer sequences and information on the 
construction of plasmids used in this study are provided in Supplementary Table 3.

Scoring of TSC. TSC death was scored at the L1 stage. Animals were synchronized 
by treating gravid hermaphrodites with alkaline bleach and allowing the eggs to 
hatch in M9 medium overnight. Synchronized L1s were then mounted on slides 
on 2% agarose-water pads, anaesthetized in 10 mM sodium azide and examined 
on a Zeiss Axioplan 2 or Axio-Scope A1 under Nomarski optics and wide-field 
fluorescence at × 40. The TSC was identified by green fluorescence (from reporter 
transgenes) as well as by its location and morphology.

Mutagenesis and mutant identification. nsIs435 animals were mutagenized using 
75 mM ethylmethanesulfonate (M0880, Sigma) for 4 h at 20 °C. Approximately 
27,000 F2 progeny were screened for TSC persistence on a Zeiss Axio-Scope A1 
at × 40. eff-1(ns634) and eff-1(ns627) were mapped to segment 9 of chromosome 
II by Hawaiian single nucleotide polymorphism (SNP) mapping38. The gene was 
identified by fosmid rescue and candidate gene analysis. See Supplementary Table 5.

Quantification of apoptotic cell corpse persistence. General engulfment defects 
were scored as persistent corpses in the heads of L1 larvae that were anaesthetized 
with 30 mM sodium azide and mounted on agar pads, using Nomarski optics. 
n =  70 for WT and n =  78 for eff-1(ns634).

Mosaic analysis. Three lines of eff-1(ns634) TSC::myrGFP animals with unstable 
extrachromosomal arrays of eff-1p::eff-1 cDNA-SL2-myr-mCherry were studied. Animals 
that either had mCherry (and hence eff-1) expression in hyp10, or that did not have 
expression, were scored for a TSC defect. Non-transgenic animals were used as controls.

Scoring cell fusion. The apical junctional marker AJM-1::GFP was used to score 
cell fusion defects indicated by the presence of a AJM-1::GFP-labelled membrane. 
We define fusion as the loss of AJM-1::GFP from junctions34.

Heat-shock experiments. Transgenic animals carrying a heat-inducible hsp-16.2 
promoter driving eff-1 cDNA and an SL2 myristoylated mCherry were generated. 
These animals and siblings without the array at the synchronized L1 stage were 
heat-shocked in a water bath at 33 °C and allowed to recover at 20 °C for 2 h in 
liquid (M9) culture. Animals were then scored for either TSC process persistence 
or hyp10 fusion (AJM-1::GFP) on slides.

Electron microscopy. eff-1(ns634) nsIs435 L1 larvae were imaged using a Zeiss 
Axioplan 2 compound microscope to measure the relative location of the TSC 
within the worm relative to the tail tip using the AxioVision software (Zeiss). 
Animals were then fixed, stained, embedded in resin and sectioned using 
standard methods39. Images were acquired on an FEI TECNAI G2 Spirit BioTwin 
transmission electron microscope with a Gatan 4 K ×  4 K digital camera at The 
Rockefeller University Electron Microscopy Resource Center.

Microscopy and image processing. Some images were collected on an Axioplan 
2 microscope (Zeiss) with × 63/1.4 numerical aperture (NA) objective (Zeiss) 
and dual-band filter set (set 51019, Chroma). Most images were collected on 
a DeltaVision Core imaging system at the Rockefeller Bioimaging Facility (GE 
Healthcare Life Sciences) with an Olympus IX-71 microscope and Insight 7 colour 

SSI illumination system using an UPLSAPO × 60/1.3 NA silicone oil objective 
(Olympus) and a pro.edge sCMOS camera. Images were acquired and deconvolved 
using measured point-spread functions using SoftWorx software (GE Healthcare 
Life Sciences). For still embryo imaging, embryos were anaesthetized using 0.5 M 
sodium azide. Larvae were paralysed as described above.

Fluorescence recovery after photobleaching. Fluorescence recovery after 
photobleaching (FRAP) experiments were performed on a DeltaVision Core 
imaging system at the Rockefeller Bioimaging Facility using the 410, 488 and 532 
laser module (QLM). Live L1 larvae were mounted and immobilized using 10 mM 
sodium azide. GFP surrounding the TSC was selectively photobleached at 25% 
406-nm laser power for a 0.250-second pulse. Post-bleach images were collected at 
5-second intervals for 3 min. Some animals showed GFP recovery later and were 
imaged 30 min after photobleaching.

Scoring CEM neurons. CEM examination was done following a previous study16. 
Embryos were mounted using 20-mm bead spacers or 2% agarose pads. During heat-
shock induction, the cell was irradiated for five continuous minutes. Precursor cells 
were identified using a nuclear UNC-130-GFP marker. When four cells were labelled 
and the signal co-localized with UNC-130-GFP, induction was scored as specific.

iSPIM imaging. Light-sheet microscope imaging was performed on a custom-built 
iSPIM based on a previously published design11 using a Hammamatsu Orca Flash 
4.0 camera. Embryos that were collected by dissecting gravid adults were mounted 
on a coverslip with a polylysine solution (Sigma) spot. Imaging conditions were as 
follows: temperature: 20–22 °C; laser power (488-nm solid state laser): 100–130 µ W;  
exposure time: 10.2–20 ms; and time between stacks: 2–3 min.

TSC ablation. Embryonic ablations were performed using an Olympus UPLSAPO 
× 60 objective on a Zeiss AxioObserver Z1 frame equipped with a Yokogawa CSU-
X1 spinning disk head and two Hamamatsu C9100-13 EM-CCD cameras. Ablations 
were performed on ced-3(n717) embryos to verify successful ablation. Embryos at 
the 2-cell or 4-cell stage were cut from gravid hermaphrodites and mounted based 
on standard protocols40. TSC precursors were identified by tracing the embryonic 
lineage up until their terminal division. A total of 35 low-energy pulses were 
delivered at 2 Hz to each of the TSC precursors 7 min after observing the beginning 
of each cell’s cytokinesis. The ablated TSC precursors and their hyp10 siblings were 
then tracked to verify that the TSC precursors died and were extruded from the 
embryo while the hyp10 cells migrated to their correct final position and showed 
no signs of damage. Embryos in which one or more TSC precursors failed to be 
extruded or in which off-target damage was observed in neighbouring cells were 
burst using a high-energy laser pulse. The embryos were allowed to hatch overnight 
before the resulting larvae were recovered and mounted for imaging.

Statistics and reproducibility. The samples sizes and statistical tests were selected 
based on previous studies with similar methodologies. Sample sizes were not 
determined using statistical methods. All experiments were repeated at least two to 
three times, as indicated, giving similar results. Independent transgenic lines were 
treated as independent experiments. Quantification of TSC persistence was done 
using an unpaired two-tailed t-test (Graphpad). For all figures, mean ±  standard 
error of the mean (s.e.m.) is represented. For Fig. 4b, n =  1, Supplementary 
Fig. 1a, n =  1; Supplementary Fig. 1b, n =  2, Supplementary Fig. 1f–i, n =  2 and 
Supplementary Fig. 4g–r, n =  1, where n =  the number of biologically independent 
animals. Source data for Figs. 1a–h,j,m,r,u,v, 2a,d, 3a,d and 4a–g and Supplementary 
Figs. 1a–i, 2b–d, 3a–i and 4a–d,g–r can be found in Supplementary Table 2.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. Source data for Figs. 1–4 and Supplementary Fig. 2 have been 
provided as Supplementary Table 2. All other data supporting the findings of this 
study are available from the corresponding author on reasonable request.
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b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used in this study.
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Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

No human researcher participants were used in this study.

 Description of research animals
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