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SUMMARY

Nonmotile primary cilia are sensory organelles com-
posed of a microtubular axoneme and a surrounding
membrane sheath that houses signaling molecules.
Optimal cellular function requires the precise regula-
tion of axoneme assembly, membrane biogenesis,
and signaling protein targeting and localization via
as yet poorly understood mechanisms. Here, we
show that sensory signaling is required to maintain
the architecture of the specialized AWB olfactory
neuron cilia in C. elegans. Decreased sensory signal-
ing results in alteration of axoneme length and expan-
sion of a membraneous structure, thereby altering
the topological distribution of a subset of ciliary
transmembrane signaling molecules. Signaling-reg-
ulated alteration of ciliary structures can be bypassed
by modulation of intracellular cGMP or calcium levels
and requires kinesin-II-driven intraflagellar transport
(IFT), as well as BBS- and RAB8-related proteins.
Our results suggest that compensatory mechanisms
in response to altered levels of sensory activity mod-
ulate AWB cilia architecture, revealing remarkable
plasticity in the regulation of cilia structure.

INTRODUCTION

Nonmotile primary cilia are microtubule-based sensory organ-

elles that play critical roles in signal transduction (Scholey and

Anderson, 2006; Singla and Reiter, 2006). Primary cilia consist

of a central axoneme surrounded by a ciliary membrane that

houses molecules such as receptors and channels required for

sensation of environmental cues and signal transduction. Al-

though the structures of many primary cilia are relatively simple,

cilia present on sensory neurons can exhibit highly complex and

diverse morphologies that are essential for their specialized

functions. For example, vertebrate rods and cones exhibit highly

elaborate outer segments that are unique ciliary structures con-

sisting of membrane-associated molecules required for photo-

transduction. Ciliary dysfunction has been associated with

a plethora of diseases (Bisgrove and Yost, 2006), indicating

that maintenance of cellular homeostasis is critically dependent

on efficient cilia activity. It is thus essential that the form and

function of these structures are precisely regulated.
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The elaboration of ciliary structures requires the coordination

of axonemal shaft formation with ciliary membrane biogenesis

(Sorokin, 1962). All cilia are formed via the highly conserved pro-

cess of intraflagellar transport (IFT), which transports molecules

essential for ciliary assembly and function (Rosenbaum and Wit-

man, 2002; Scholey, 2003). IFT is mediated by the kinesin-2 and

dynein molecular motors, which move cargo such as axoneme

precursors in the anterograde and retrograde directions, respec-

tively, as part of a highly conserved macromolecular protein

complex referred to as the IFT particle (Cole et al., 1998; Kozmin-

ski et al., 1993). In addition to building the axoneme, IFT also

plays a role in the targeting and movement of ciliary membrane

proteins (Jenkins et al., 2006; Marszalek et al., 2000; Pan and

Snell, 2003). The IFT20 protein is localized to the Golgi and has

been implicated in the trafficking of ciliary membrane proteins

from the Golgi to the cilia (Follit et al., 2006). IFT proteins are es-

sential for Sonic hedgehog signaling in cilia (Corbit et al., 2005;

Huangfu et al., 2003; May et al., 2005) and for adhesion-regu-

lated activation of a membrane-localized kinase in the flagella

of Chlamydomonas during mating (Wang et al., 2006). Another

class of proteins also implicated in the regulation of cilia struc-

ture and function are the BBS proteins, and mutations in these

proteins lead to the pleiotropic Bardet-Biedl syndrome (Ansley

et al., 2003; Blacque et al., 2004). The BBS proteins have been

suggested to coordinate the functions of kinesin-2 motors in

the formation of the axoneme and in the assembly of IFT particles

in C. elegans cilia (Blacque et al., 2004; Ou et al., 2005). Recently,

the BBS protein complex has also been shown to regulate cilio-

genesis in part via regulation of the small GTPase RAB8 (Nachury

et al., 2007), which, in turn, regulates the targeting of transmem-

brane proteins to the cilia via post-Golgi vesicle fusion or exocy-

tosis at the ciliary base (Moritz et al., 2001). Despite these

findings, much remains to be understood regarding the coordi-

nation and regulation of IFT, ciliary membrane biogenesis, and

signaling molecule localization in order to generate and maintain

appropriate ciliary structures.

The nematode C. elegans is an excellent system in which to

study the molecular mechanisms underlying cilia structure and

function. C. elegans contains 60 ciliated neurons; of these, 12

pairs are located in the amphid chemosensory organs of the

head (Perkins et al., 1986; Ward et al., 1975). Eight of these neu-

ron pairs respond to different subsets of aqueous compounds

and contain cilia with relatively simple structures (channel cilia)

(Bargmann and Horvitz, 1991; Perkins et al., 1986; Ward et al.,

1975). IFT can be observed and quantitated in real time in these

cilia in vivo (Orozco et al., 1999), allowing for a detailed analysis

and comparison of the process in both wild-type and mutant
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animals. As is the case in other animals, formation of these cilia in

C. elegans requires the kinesin and dynein motors, as well as

highly conserved IFT particles and BBS proteins (Ansley et al.,

2003; Blacque et al., 2004; Snow et al., 2004). The AWA, AWB,

and AWC olfactory neurons respond to volatile odorants and

contain highly elaborate and specialized cilia structures (wing

cilia) (Bargmann et al., 1993; Perkins et al., 1986; Ward et al.,

1975). These specialized cilia structures may be formed via

cell-specific regulation of IFT (Evans et al., 2006; Mukhopadhyay

et al., 2007). Both channel and wing cilia house transmembrane

proteins required for sensory signal transduction, and a subset of

these proteins is localized via IFT-dependent processes (Qin

et al., 2005). The ability to manipulate the functions of defined

sensory neurons in C. elegans, together with the ability to visual-

ize the effects of these manipulations on individual cilia in vivo

provides, an excellent opportunity to investigate the pathways

and molecules required to generate and modulate neuron-

specific ciliary structures.

Here, we show that sensory signal transduction is required to

maintain, but not generate, the specialized ciliary structures of

the AWB olfactory neurons in C. elegans. AWB cilia structure is

similarly disrupted in wild-type animals grown in the absence

of bacterial food-derived chemosensory cues, and in animals

mutant for genes required for AWB-mediated sensory signal

transduction. In particular, we find that membrane biogenesis

is affected by levels of sensory signaling such that a membrane-

ous structure is expanded and the distribution patterns of a sub-

set of transmembrane signaling molecules is altered in response

to decreased sensory signaling. These ciliary structural pheno-

types can be bypassed via modulation of intracellular cGMP or

calcium (Ca2+) levels. We further demonstrate that sensory sig-

naling-mediated structural remodeling requires kinesin-II-medi-

ated IFT, as well as BBS- and RAB8-related proteins. Our results

indicate that sensory signaling plays an active role in maintaining

ciliary architecture and membrane protein localization in a

specialized olfactory cilia type.

RESULTS

Mutations in Chemosensory Signal Transduction
Molecules Alter AWB Olfactory Neuron Cilia Structure
To determine whether signaling genes known to be required for

chemosensory signal transduction play a role in regulating cilia

structure, we examined cilia in animals mutant for each of

these molecules. Mutations in the odr-3 Gai/o subunit gene re-

quired for chemosensory signal transduction were previously

shown to affect cilia structures of the AWA and AWC olfactory

neurons (Roayaie et al., 1998). However, cilia of the AWA and

AWC neurons exhibit complex, three-dimensional morphol-

ogies that are challenging to visualize and measure (Evans

et al., 2006; Perkins et al., 1986). We therefore chose to focus

on the cilia of the AWB neurons, which are relatively simpler

structurally and which we have studied previously (Mukhopad-

hyay et al., 2007).

The cilia of the AWB neurons can be visualized via GFP ex-

pression driven by the AWB-specific str-1 promoter (Mukhopad-

hyay et al., 2007; Troemel et al., 1997; Figures 1A and 1B).

Although all AWB cilia in wild-type animals exhibit the character-

istic Y-shaped structure, we observed animal-to-animal variabil-

ity in both the lengths of each cilia branch and the area of a

fan-shaped structure (henceforth referred to as a fan) occasion-

ally present on either branch (Mukhopadhyay et al., 2007; Table

1). Dramatic and highly penetrant defects in AWB cilia structure

were observed in animals mutant for the odr-1 guanylyl cyclase,

the tax-2/tax-4 (tax-2/4) cyclic nucleotide-gated channel sub-

units, and the grk-2 G protein-coupled receptor kinase genes

(Figures 1C and 1D; Table 1). These molecules are expressed

in, and required for, the sensory functions of the AWB neurons

Figure 1. Sensory Signaling Modulates

AWB Cilia Structure

(A and A0) Location of the cell body, processes,

and cilia of an AWB olfactory neuron in the head

of an adult animal. The AWB neuron is visualized

via expression of str-1::gfp. Only one member of

the bilateral AWB neuron pair is visible in the lateral

view shown.

(B–F) The cilia of an AWB neuron visualized via str-

1p::gfp transgene expression in (B and B0) wild-

type (WT) adults grown under standard conditions,

(C and C0) tax-4(ks11) adults, (D and D0) odr-1

(n1936) adults, (E and E0) wild-type adults grown

in CeMM, and (F and F0) wild-type adults grown

in CeMM + bacteria. All cilia images were acquired

by using confocal microscopy.

(B0–F0 ) represent volumetric reconstructions from

confocal projection series. Arrowheads indicate

fans. Anterior is oriented toward the left in all

images.

The scale bar is 7.5 mm for all confocal images.
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Table 1. Sensory Signaling Regulates AWB Cilia Structure

Straina

% Cilia

with a Fanb

Median Fan Area/Cilia

Branch in mm2 (Q1, Q3)

Length of Long

Cilia Branch (mm ± SD)

Length of Short

Cilia Branch (mm ± SD)

Wild-type 51 0 (0, 0.5) 7.4 ± 1.1 5.9 ± 0.9

Wild-type in CeMMc 100d 3.0 (1.5, 4.6)d 6.5 ± 0.9d 5.2 ± 0.8d

Wild-type in CeMMc + bacteria 62 0 (0, 1.5) 7.3 ± 1.2 6.2 ± 1.1

Guanylyl cyclase mutants

odr-1(n1936) 100d 3.2 (2.0, 4.1)d 6.5 ± 1.3d 4.9 ± 0.8d

odr-1(n1930) 100d 3.0 (2.0, 4.1)d 6.0 ± 0.7d 5.2 ± 0.4d

CNG-gated channel subunit mutants

tax-2(p691) 100d 2.8 (1.5, 4.4)d 5.2 ± 1.1d 4.3 ± 0.9d

tax-2(p671) 95d 2.4 (0, 4.2)d 4.7 ± 1.2d 4.0 ± 0.5d

tax-2(ks31ts) 97d 2.2 (0.9, 3.5)d 5.3 ± 1.0d 4.3 ± 0.6d

tax-2(ks31ts); Ex[str-1p::tax-2::gfp] 67e 0 (0, 1.2)e 7.8 ± 1.1e 6.5 ± 1.1e

tax-4(p678) 100d 2.0 (1.1, 2.9)d 4.3 ± 0.4d 3.8 ± 0.3d

tax-4(ks11) 100d 2.9 (2.0, 4.0)d 4.6 ± 0.4d 3.9 ± 0.5d

tax-4(ks28) 100d 3.2 (2.2, 4.3)d 4.7 ± 0.6d 3.9 ± 0.5d

GPCR kinase mutants

grk-2(gk268) 95d 2.1 (0, 3.2)d 6.8 ± 1.0 5.3 ± 0.9d

grk-2(rt97) 98d 2.5 (0.9, 3.2)d 6.3 ± 0.8d 4.8 ± 0.5d

grk-2(rt97); Ex[str-1p::grk-2] 52f 0 (0, 1.3)f 7.1 ± 1.0f 5.6 ± 0.9f

Gai/o subunit mutants

odr-3(n2150) 0d 0 (0, 0)d 6.5 ± 0.9d 4.6 ± 0.9d

odr-3(n1605) 2d 0 (0, 0)d 5.9 ± 0.9d 4.3 ± 0.9d

odr-3(Q206L)XS 0d NA 2.3 ± 0.9d 1.9 ± 0.7d

Double/triple mutants

odr-3(n2150); odr-1(n1936) 3 0 (0, 0) 5.6 ± 0.8d 4.3 ± 0.8d

odr-3(n2150); odr-1(n1936); Ex[str-1p::odr-3::gfp] 48g 0 (0, 2.1)g ND ND

tax-4(p678); odr-3(n2150)h 4 0 (0, 0) 5.7 ± 1.1d 4.2 ± 0.8d

tax-4(ks11); odr-3(n2150); odr-1(n1936) 5 0 (0, 0) 6.2 ± 0.8d 5.2 ± 0.8d

NA, not applicable; ND, not done; SD, standard deviation; Q1, 25th percentile; Q3, 75th percentile.
a The cilia of adult animals grown at 25�C were examined, except as indicated.
b A total of 20–145 cilia were examined for each.
c Animals were grown on CeMM agar plates at 20�C.
d Different from wild-type at p < 0.001.
e Different from tax-2(ks31) mutant animals at p < 0.001.
f Different from grk-2(rt97) mutant animals at p < 0.001.
g Different from odr-3(n2150); odr-1(n1936) mutant animals at p < 0.001.
h Animals were grown at 20�C.
(Coburn and Bargmann, 1996; Fukuto et al., 2004; Komatsu

et al., 1996; L’Etoile and Bargmann, 2000). In tax-2/4 mutants,

the length of each ciliary branch was truncated, whereas the

area of the fan was significantly increased (Figures 1C and 1C0;

Table 1). In odr-1 and grk-2 mutants, we observed a similar in-

crease in the area of the fan in all examined AWB cilia, with

less severe changes in cilia branch lengths (Figures 1D and

1D0; Table 1). However, the overall surface area of the AWB cilia

is not significantly altered in signaling mutants (total surface area:

wild-type, 56.8 ± 8.6 mm2 [n = 5]; odr-1, 47 ± 5.9 mm2 [n = 5]; and

tax-4, 57.5 ± 10.1 mm2 [n = 4]). Similar phenotypes were

observed in animals carrying different alleles of each gene

(Table 1), as well as with gfp expressed under multiple AWB-

selective promoters (data not shown). Expression of wild-type
764 Developmental Cell 14, 762–774, May 2008 ª2008 Elsevier Inc.
tax-2 and grk-2 cDNAs under the str-1 promoter was sufficient

to restore wild-type cilia morphology in tax-2 and grk-2 mutants,

respectively (Table 1), indicating that these genes act cell auton-

omously to regulate AWB cilia structure. Although the ASI neu-

rons also express these molecules (Komatsu et al., 1996; L’Etoile

and Bargmann, 2000), we did not observe any ciliary defects in

this neuron type (Table S1; see the Supplemental Data available

with this article online).

The ODR-3 Gai/o subunit has been suggested to transduce sig-

nals from ligand-bound receptors to the cGMP-mediated signal-

ing pathway in C. elegans chemosensory neurons (Roayaie et al.,

1998). However, loss-of-function (lf) mutations in odr-3 caused

a loss of all fan-like structures in examined cilia (Table 1),

whereas overexpression of a constitutively active ODR-3
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(odr-3(Q206L)XS) protein caused a marked shortening of the

cilia branches (Table 1). Cilia phenotypes of animals doubly mu-

tant for odr-3(lf) and odr-1 or tax-4 and animals of a tax-4; odr-3;

odr-1 triple mutant strain were similar to those of odr-3(lf)

alone (Table 1), suggesting that ODR-3 either acts downstream

of these molecules or in a parallel pathway. Taken together, these

results indicate that mutations in a subset of AWB-expressed

sensory signaling genes affect both AWB cilia branch length

and shape.

AWB Ciliary Structures Are Altered in the Absence
of Bacterial Food
Altered AWB ciliary structures in signaling mutants could arise

as a consequence of compromised sensory signaling or, alter-

natively, due to sensory signaling-independent roles of these

molecules in the regulation of ciliary architecture. To distinguish

between these possibilities, we investigated whether AWB

cilia structures are similarly altered in wild-type animals grown

in the absence of bacterial food.

Olfactory neurons in C. elegans respond to chemicals pro-

duced by their bacterial food source (Bargmann et al., 1993).

The AWB neurons have previously been shown to respond

to the chemicals 2-nonanone and serrawettin W2, which are

produced by pathogenic bacteria, and likely also mediate

responses to additional bacteria-derived cues (Pradel et al.,

2007; Troemel et al., 1997). We reasoned that growing animals

in chemically defined axenic media (CeMM) in the absence of

bacteria may decrease sensory signaling while simultaneously

permitting growth and development, albeit at slower rates

(Szewczyk et al., 2003, 2006).

We found that the AWB cilia of adult wild-type animals grown

in either liquid or solid CeMM exhibited ciliary phenotypes similar

to those observed in sensory signaling mutants (Figures 1E and

1E0; Table 1; Table S2). The observed ciliary phenotypes were

likely not due to the altered metabolic rates and caloric restric-

tion of CeMM-grown animals (Szewczyk et al., 2006), since no

AWB ciliary phenotypes were observed in eat-6(ad467) Na+/K+

ATPase mutants, which also exhibit altered metabolic rates

due to feeding defects (Avery, 1993; Davis et al., 1995; Lakowski

and Hekimi, 1998; data not shown). Ciliary structural defects

were suppressed when the CeMM was supplemented with bac-

teria (Figures 1F and 1F0; Table 1; Table S2). The AWB ciliary phe-

notypes of odr-1 and tax-4 mutants were not further altered upon

cultivation in CeMM with or without bacteria (Table S2). Growth

in CeMM also did not affect the ciliary structures of the ASH or

ASI chemosensory neurons (Table S1). These results are consis-

tent with the hypothesis that the AWB ciliary structures are al-

tered to compensate for decreased sensory signaling, suggest-

ing that the similar structural alterations observed in signaling

mutants are due to altered sensory signal transduction and are

not solely due to signaling-independent roles of these molecules

in other cellular processes. However, it remains possible that

CeMM is instructive for the formation of altered AWB ciliary

structures, or that the expression or localization of one or more

signaling gene is reduced upon growth in CeMM.

Ultrastructure of the AWB Cilia in Signaling Mutants
We previously described the ultrastructure of the wild-type AWB

cilia, and we showed that the far-distal segments do not appear
D

to contain an axoneme (Mukhopadhyay et al., 2007). We wished

to determine whether the fan-shaped structures observed in

sensory signaling mutants also lacked an axoneme and were

perhaps membraneous extensions of the corresponding seg-

ments. Examination of serial sections of AWB cilia in odr-1 and

tax-4 mutants via electron microscopy showed that, similar to

wild-type animals, the middle segments of these cilia contained

singlet and rare doublet microtubules, whereas rare singlet

microtubules were present more distally (Movies S1–S3). The

length of each cilia branch was truncated in tax-4 mutants. In

both odr-1 and tax-4 mutants, we observed a highly flattened

structure corresponding to the fan at the distal segments of

both cilia branches (Figures 2C and 2D). Three-dimensional re-

constructions of the serial sections indicated that the fan struc-

tures are asymmetric, extending from each cilia branch in the di-

rection away from the midline (Figure 2A). Similar structures were

not observed in wild-type cilia grown under standard conditions

(Figures 2A and 2B). The fan contained few, if any, singlet micro-

tubules, which were generally restricted to the area proximal to

the midline. Thus, mutations in odr-1 and tax-4 result in an al-

tered membraneous structure at the distal segments of the

AWB cilia. Examination of the micrographs did not reveal any

structural alterations in channel cilia in signaling mutants (Figures

2C and 2D; Movies S2 and S3).

A Subset of Signal Transduction Molecules Is
Localized to the Fan-Shaped Membraneous Areas
Signaling molecules such as receptors and channels are prefer-

entially localized to the membranes of sensory cilia. We wished

to determine whether the extended membraneous structures in

CeMM-grown wild-type animals and in odr-1 and tax-4 signaling

mutants also housed AWB-expressed transmembrane signal

transduction molecules, or whether the composition of these

areas was distinct.

To address this issue, we examined the localization of GFP-

tagged ciliary transmembrane proteins, including the AWB-ex-

pressed STR-1 and SRD-23 chemoreceptors, TAX-2 and ODR-3.

We verified that the tagged TAX-2 and ODR-3 proteins were

functional by rescuing the AWB cilia defects in tax-2 and odr-3

mutants (Table 1), although no str-1 or srd-23 mutants are cur-

rently available. In wild-type or rescued animals grown under

standard conditions, all GFP-tagged fusion proteins, with the

exception of TAX-2, were localized throughout the AWB cilia,

whereas TAX-2 was localized in a discrete proximal domain (Fig-

ures 3A–3D). In CeMM-grown wild-type animals and in odr-1, tax-

4, and grk-2 mutants, GFP-tagged STR-1, SRD-23, and ODR-3

fusion proteins were also present throughout the cilia, including

in the fans (Figures 3A–3C). We did not observe any GFP-tagged

TAX-2 protein in either odr-1 or tax-4 mutants, indicating that

TAX-2 localization may depend on these genes (data not shown).

Interestingly, however,TAX-2::GFP remained restricted toa prox-

imal zone in grk-2 mutants as well as in CeMM-grown wild-type

animals, in a pattern similar to that in the cilia of wild-type animals

grown in the presence of bacteria, and was excluded from the fan

(Figure 3D). The localization of IFT particle and motor proteins

such as OSM-6, OSM-3, and KAP-1 was also unaltered in signal-

ing mutants, and these proteins were largely excluded from the

membraneous expansions (Figure 3E; Figure S1). These results

further indicate that the observed fans correspond to altered
evelopmental Cell 14, 762–774, May 2008 ª2008 Elsevier Inc. 765
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membrane structures, and that the overall distribution pattern of

a subset of ciliary transmembrane signaling molecules is altered

upon decreased sensory signaling (summarized in Figure 3F).

TAX-2 Acts during Postembryonic Development
to Maintain AWB Cilia Structure
Cilia are formed during late embryonic development (Sulston

et al., 1983). Sensory signaling may play a role in the generation

or maintenance of these structures. To investigate the develop-

mental stage at which sensory molecules are required to modu-

late AWB cilia architecture, we performed temperature-shift ex-

periments with the temperature-sensitive tax-2(ks31) allele. The

AWB cilia of tax-2(ks31) mutants exhibited wild-type morphology

when animals were grown at the permissive temperature of

Figure 2. Ultrastructure of AWB Cilia in

Signaling Mutants

(A) Three-dimensional reconstructions of the AWB

cilia generated from serial EM sections obtained

from wild-type, odr-1(n1936), and tax-4(ks11) mu-

tants. The broken lines indicate the sections

shown in (B)–(D).

(B–D) A dashed line indicates the extent of the

AWB cilia. Note that the axoneme structure of

the channel cilia (one channel cilium is indicated

by an arrowhead) is unaltered. The complete im-

age sets of all acquired sections are shown in

Movies S1–S3. The scale bars are 500 nm.

15�C, but exhibited large, fan-like struc-

tures and truncated branch lengths

when grown at 25�C (Figures 4A–4D).

We grew tax-2(ks31) animals at 15�C or

25�C and transferred them to 25�C or

15�C, respectively, at different larval

stages. The structure of AWB cilia of adult

animals moved from 25�C to 15�C at the

L1 larval stage was similar to that of ani-

mals grown throughout their life cycle at

15�C, suggesting that the earlier embry-

onic phase of cilia development is not af-

fected by mutations in tax-2. The AWB

cilia of adult animals moved from 15�C

to 25�C as late as the L4 larval stage

also exhibited significantly aberrant mor-

phology (Figures 4A–4D), indicating that

TAX-2 function is required at late larval

stages to maintain cilia architecture. Con-

versely,AWBcilia defects weredecreased

in animals moved from 25�C to 15�C at L2

and later larval stages (Figures 4A–4D).

These results indicate that TAX-2 function

is required during late larval stages to

modulate AWB cilia morphology.

cGMP-Mediated Signaling
Modulates Cilia Morphology
During chemosensory signal transduc-

tion, increased levels of cGMP generated

by the guanylyl cyclase ODR-1 is thought

to gate the TAX-2/4 channel (L’Etoile and Bargmann, 2000). Thus,

in odr-1 mutants, the TAX-2/4 channels may fail to open under ap-

propriate conditions of sensory stimulation. If these molecules act

similarly to regulate cilia architecture, then increasing cGMP

levels in odr-1, but not tax-4, mutants may bypass the mutant

phenotype. Addition of the membrane-permeable cGMP analog

8-Br-cGMPhas previouslybeenshown to bypass the phenotypes

of the daf-11 guanylyl cyclase mutant in the regulation of dauer

formation (Birnby et al., 2000). We found that growing odr-

1(n1936), but not tax-4(ks11), animals on plates containing 8-Br-

cGMP partially suppressed the AWB cilia phenotypes (Figures

4E and 4F). Moreover, consistent with the finding that this

pathway continues to act late in development to regulate cilia

structure, addition of 8-Br-cGMP at later larval stages also
766 Developmental Cell 14, 762–774, May 2008 ª2008 Elsevier Inc.
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Figure 3. Localization of Ciliary Proteins in AWB Cilia
(A–E) Shown are the localization patterns of GFP-tagged (A) STR-1, (B) SRD-23, (C) ODR-3, (D) TAX-2, and (E) OSM-6 in the cilia of an AWB neuron in the indicated

growth conditions and genetic backgrounds. For klp-11 and bbs-8; odr-1 mutants, the cilia branch length phenotypes exhibited by a subset of these animals are

indicated in a second panel in (A). The asterisk in (A) indicates accumulation at the ciliary base in kap-1; osm-3 double mutants. ODR-3::GFP and TAX-2::GFP

rescue the corresponding mutant phenotypes, and their localization patterns in these mutant backgrounds are shown. OSM-6::GFP was previously shown to

rescue the osm-6 phenotype in the AWB neurons (Mukhopadhyay et al., 2007). Alleles used were odr-1(n1936), tax-4(ks11), egl-19(n2368gf), klp-11(tm324),

kap-1(ok676), bbs-8(nx77), osm-3(p802), and grk-2(gk268). WT, wild-type. The scale bars are 15 mm.

(F) Summary of localization patterns of GFP-tagged proteins in AWB cilia.
resulted in significant rescue of the mutant phenotype (Figures 4E

and 4F). Interestingly, addition of this cGMP analog also de-

creased both the percentage of cilia with fans, as well as the over-

all fan area of wild-type AWB cilia (Figures 4E and 4F), suggesting

that growth of the fan is inversely correlated with intracellular

cGMP levels.

Increased Calcium-Mediated Signaling Can Bypass
the Cilia Defects of a Subset of Signaling Mutants
Gating of TAX-2/4 channels by cGMP is predicted to result in

influx of cations such as Ca2+ (Kaupp and Seifert, 2002; Kimura

et al., 2004). Mutations in grk-2 have also been shown to de-

crease stimulus-evoked Ca2+ influx in the ASH sensory neurons

(Fukuto et al., 2004). Thus, intracellular Ca2+ levels in the AWB

neurons are predicted to be decreased in odr-1, tax-2/4, and

grk-2 mutants. We wondered if the defects in cilia architecture
D

in these signaling mutants could be bypassed by increasing

intracellular Ca2+ levels.

The L-type, voltage-gated Ca2+ channel egl-19 is broadly ex-

pressed, including in neurons (Lee et al., 1997; data not shown).

gf mutations in egl-19 prolong the duration of depolarization

(Avery, 1993; Lee et al., 1997; Raizen and Avery, 1994). egl-

19(gf) mutations had minor effects on AWB cilia morphology

on their own, but they strongly suppressed the cilia defects

and the transmembrane protein localization phenotype of both

odr-1(n1936) and grk-2(gk268) mutants (Figure 3A; Table S3). lf

mutations in egl-19 had minor effects on AWB cilia structures

in either wild-type or mutant backgrounds (Table S3). lf muta-

tions in the UNC-43 Ca2+/calmodulin-dependent protein kinase

II (CaMKII) (Reiner et al., 1999) alone also had minor effects on

fan structure, but they did not further modify the odr-1 cilia phe-

notype (Table S3). However, constitutively activated UNC-43
evelopmental Cell 14, 762–774, May 2008 ª2008 Elsevier Inc. 767
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suppressed the odr-1(n1936) AWB cilia phenotype (Table S3).

Neither egl-19(gf) or unc-43(gf) suppressed the cilia defects of

tax-4(ks11) mutants (Table S3). These results suggest that in-

creased Ca2+-mediated signaling is partly sufficient to bypass

the requirement for a subset of signaling molecules, but not

that of the cyclic nucleotide-gated channel, in the regulation of

AWB cilia structure.

Sensory Signaling-Mediated Remodeling of AWB Ciliary
Architecture Requires Kinesin-II
We next investigated the mechanisms required for the signaling-

mediated structural alterations in the AWB cilia. Formation of the

fans and localization of transmembrane proteins to these struc-

tures may occur via diffusion after vesicle fusion at the cilia base,

or may require active transport via IFT-dependent or IFT-inde-

pendent mechanisms (Jenkins et al., 2006; Peden and Barr,

2005; Qin et al., 2005; Scholey and Anderson, 2006). We recently

Figure 4. TAX-2 and ODR-1 Functions Are

Required during Later Larval Stages to

Modulate AWB Cilia Morphology

(A–D) tax-2(ks31) animals were raised at 15�C or

25�C and were shifted to 25�C or 15�C, respec-

tively, at the indicated developmental stages.

The (A) percentage of cilia exhibiting fans, the (B)

fan area per cilia branch, and the lengths (±SD)

of the (C) long and (D) short cilia branches were

quantified. Asterisks mark values that are signifi-

cantly different from those of animals grown

throughout development at either 25�C (for ani-

mals shifted from 25�C to 15�C) or at 15�C (for

animals shifted from 15�C to 25�C) at p < 0.001.

n = 30–100 for each time point. Box plots in (B)

show the 25th, 50th (median, represented by sym-

bol), and 75th percentiles as well as the minimum

and maximum values.

(E and F) Modulation of cGMP levels alters the

AWB ciliary membrane area. Animals of the indi-

cated genotypes were grown with or without

7 mM 8-Br-cGMP, and the (E) percentage of cilia

with fans and the (F) fan areas were quantified.

8-Br-cGMP was present either throughout devel-

opment or was added at the L2 larval stage.

Shown are data from two or more independent ex-

periments. Asterisks indicate values that are dif-

ferent from the corresponding strain grown in the

absence of 8-Br-cGMP at p < 0.001. n = 30–200

for each. Box plots in (F) show the 25th, 50th (me-

dian, represented by filled circles), and 75th per-

centiles as well as the minimum and maximum

values. All cilia measurements were performed

in adult animals carrying stably integrated

str-1p::gfp transgenes.

showed that the kinesin-II and OSM-3 an-

terograde motors act redundantly and in-

dependently of each other to form the

AWB cilia middle segments, whereas nei-

ther motor appears to be essential to form

the distal segments (Mukhopadhyay

et al., 2007). This is in contrast to the func-

tions of these motors in channel cilia in

which both motors act cooperatively to form the middle seg-

ments, and OSM-3 alone acts to elongate the distal segments

(Snow et al., 2004).

To determine whether IFT is altered in signaling mutants, we

first investigated the movement of the IFT particle component

OSM-6 as well as the KAP-1 kinesin-II and the OSM-3 motor

subunits in the AWB cilia (Mukhopadhyay et al., 2007) of odr-

1, tax-4, and odr-3 mutants. Consistent with the localization of

GFP-tagged IFT proteins and motors to the axoneme

(Figure 3E), IFT could be observed only along the main cilia

branches, and no IFT was observed in the fan-like structures

(Figure S1; Movies S4–S6). The velocities and patterns of

movement of GFP-tagged OSM-6 and kinesin motors in odr-

1, tax-4 and odr-3 mutants were similar to those observed

in wild-type AWB cilia (Table S4; Mukhopadhyay et al.,

2007), indicating that IFT was not grossly altered by these

mutations.
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Table 2. Altered Cilia Structures Require Kinesin-II-Mediated Transport

Straina

% Cilia

with a Fan

Median Fan Area/Cilia

Branch in mm2 (Q1, Q3)b
Length of Long

Cilia Branch (mm ± SD)

Length of Short

Cilia Branch (mm ± SD)

% Lacking

Ciliac

Wild-typed 51 0 (0, 0.5) 7.4 ± 1.1 5.9 ± 0.9 0

Wild-type in CeMM 97e 2.7 (1.7, 4.3)e 7.0 ± 0.9 5.8 ± 0.6 0

odr-1(n1936)d 100e 3.2 (2.0, 4.1)e 6.5 ± 1.3e 4.9 ± 0.8e 0

tax-4(ks11)d 100e 2.9 (2.0, 4.0)e 4.6 ± 0.4e 3.9 ± 0.5e 0

grk-2(gk268)d 95e 2.1 (0, 3.2)e 6.8 ± 1.0 5.3 ± 0.9e 0

Kinesin-II subunit mutants

kap-1(ok676) 8e 0 (0, 0)e 6.9 ± 1.0 5.6 ± 1.0e 11

kap-1(ok676) in CeMM 51f 0 (0, 1.0)f ND ND 6

klp-11(tm324) 13e 0 (0, 0)e 6.7 ± 1.0e 5.2 ± 0.9e 17

klp-11(tm324) in CeMM 32f 0 (0, 0)f ND ND 7

kap-1(ok676); odr-1(n1936) 62g 0.7 (0, 1.9)g ND ND 13

kap-1(ok676); odr-1(n1936);

Ex[str-1p::kap-1::gfp]

90 2.2 (0.5, 3.0)h ND ND 6

klp-11(tm324); odr-1(n1936) 45g 0 (0, 1.0)g ND ND 15

grk-2(gk268); klp-11(tm324) 31i 0 (0, 0)i ND ND 23

tax-4(ks11); klp-11(tm324) 35j 0 (0, 1.6)j 5.1 ± 0.9 4.3 ± 0.9 16

osm-3 mutants

osm-3(p802) 59 0 (0, 0.7) 7.8 ± 1.1 6.4 ± 1.0 0

osm-3(p802); odr-1(n1936) 90k 3.0 (0, 4.0)k ND ND 0

grk-2(gk268); osm-3(p802) 85k 1.9 (0, 3.2)k ND ND 0

tax-4(ks11); osm-3(p802) 100k 2.9 (2.1, 4.0)k 4.9 ± 0.8k 4.1 ± 0.6k 0
a AWB cilia of adult animals grown at 25�C were examined, with the exception of CeMM (liquid)-cultivated animals, which were grown at 20�C.

n = 25–150 for each.
b Severely truncated cilia were excluded.
c This category includes no cilia branches and severely truncated cilia (<1 mm), with occasional ectopic branches (Figure 3A).
d Data from Table 1.
e Different from wild-type at p < 0.001.
f Different from wild-type animals grown in CeMM at p < 0.001.
g Different from odr-1(n1936) mutant animals at p < 0.001.
h Different from kap-1(ok676); odr-1(n1936) mutant animals at p < 0.001.
i Different from grk-2(gk268) mutant animals at p < 0.001.
j Different from tax-4(ks11) mutant animals at p < 0.001.
k Not significantly different from corresponding odr-1, grk-2, or tax-4 mutant animals.
We next determined whether formation of the fans requires IFT

motor-based transport by examining the AWB cilia in CeMM-

grown wild-type and signaling mutant animals lacking motor

protein genes. Intriguingly, loss of function of either the kap-1

or klp-11 kinesin-II subunits alone resulted in a smaller fan in

wild-type animals grown under standard conditions, and

strongly suppressed the increased fan phenotypes in CeMM-

grown wild-type animals, as well as in odr-1, tax-4, and grk-2

mutants (Table 2). Correspondingly, the localization pattern of

the STR-1::GFP fusion protein was also restored to the wild-

type pattern (Figure 3A). This suppression was abolished upon

expression of a wild-type kap-1 cDNA, specifically in the AWB

neurons (Table 2). However, the truncated cilia branch pheno-

type of tax-4 mutants was not suppressed by mutations in kine-

sin-II subunits (Table 2), indicating that cilia membrane biogene-

sis and axoneme length may be regulated by distinct

mechanisms. No suppression was observed in osm-3 mutants

(Figure 3A; Table 2). These results indicate that formation of

the fans and the correlated localization pattern of transmem-
D

brane proteins upon reduction of sensory signaling requires

kinesin-II-, but not OSM-3-mediated transport.

Since mutations in sensory signaling genes lead to ciliary

structural phenotypes, the sensory behavioral defects exhibited

by these mutants could be due to these ciliary defects. However,

similar to what is seen with odr-1 mutants, klp-11; odr-1 double

mutants failed to avoid the AWB-sensed volatile repellent

2-nonanone despite exhibiting wild-type ciliary morphology

(Figure S2). Previously, defects in AWA- and AWC-mediated ol-

factory signaling in odr-3 mutants were also suggested not to be

caused by their ciliary defects (Lans et al., 2004). We could not

examine the behaviors of wild-type animals grown in CeMM

since these animals exhibited locomotory defects (S.M. and

P.S., unpublished data). These observations suggest that the

altered ciliary structures in signaling mutants may not directly

contribute to sensory signaling defects, and that the behavioral

defects of these mutants are likely due to their roles in sensory

signal transduction. Interestingly, klp-11 mutants exhibited

weak defects in 2-nonanone avoidance (Figure S2), suggesting
evelopmental Cell 14, 762–774, May 2008 ª2008 Elsevier Inc. 769
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Table 3. BBS Proteins and RAB-8/10 GTPases Modulate AWB Cilia Phenotypes of Signaling Mutants

Straina % Cilia with a Fan

Median Fan Area/Cilia

Branch in mm2 (Q1, Q3) % Shortened Ciliab

Wild-typec 51 0 (0, 0.5) 0

odr-1(n1936)c 100d 3.2 (2.0, 4.1)d 0

tax-4(ks11)c 100d 2.9 (2.0, 4.0)d 0

BBS mutants

bbs-1(ok1111) 52 0 (0, 0.5) 0

bbs-7(n1606) 37d 0 (0, 0.5) 29

bbs-8(nx77) 53 0 (0, 0.7) 2

bbs-1(ok1111); odr-1(n1936) 11e 0 (0, 0)e 67

bbs-7(n1606); odr-1(n1936) 21e 0 (0, 0.7)e 59

bbs-8(nx77); odr-1(n1936) 32e 0 (0, 0.9)e 41

RAB8-related mutants

rab-8(tm2526) 25 0 (0, 0) 0

Ex[str-1p::rab-8(Q67L XS)] 0d NA 92f

rab-8(tm2526); odr-1(n1936) 90 0.9 (0, 2.0)e 0

rab-8(tm2526); tax-4(ks-11) 88 0.9 (0, 1.8)g 0

rab-10(ok1494)h 79 0 (0, 1.2) 0

rab-10(ok1494); odr-1(n1936)h 33e 0 (0, 0)e 0

rab-10(ok1494); tax-4(ks11)h 84 0.8 (0, 1.6)g 9

arl-3 mutants

arl-3(tm1703) 83d 0.8 (0, 1.5)d 0

arl-3(tm1703); odr-1(n1936) 100i 2.7 (1.7, 4.2)i 0

arl-3(tm1703); tax-4(ks-11) 100i 3.7 (2.6, 4.6)i 0

NA, not applicable.
a Cilia of adult animals grown at 25�C were examined. n = 50–120 for each.
b This category includes cilia with both branch lengths % 4 mm and lacking a fan (Figure 3A; Figure S3D0). These cilia were excluded in the measure-

ments of fan area.
c Data from Table 1.
d Different from wild-type at p < 0.001.
e Different from odr-1(n1936) mutant animals at p < 0.001.
f These cilia were severely truncated (%1 mm; Figure S3C). Similar effects of rab-8[Q67L XS] expression were observed in wild-type and rab-8(tm2526)

mutant animals.
g Different from tax-4(ks11) mutant animals at p < 0.001.
h Animals were grown at 20�C.
i Not significantly different from corresponding odr-1 or tax-4 mutant animals.
that kinesin-II may play a role in the transport of signaling mole-

cules in the AWB cilia, similar to previous observations in the

AWC cilia (Evans et al., 2006) and in the flagella of Chlamydomo-

nas (Pan and Snell, 2003).

BBS Proteins and RAB-8/10 Interact with the Sensory
Signaling Pathway to Regulate AWB Cilia Structure
Recent work suggests that BBS proteins and RAB8 play a role in

ciliary membrane biogenesis by facilitating docking and fusion of

post-Golgi vesicles at the ciliary base (Moritz et al., 2001;

Nachury et al., 2007). BBS proteins have also been suggested

to couple the kinesin-II and OSM-3 motors to regulate ciliogen-

esis in C. elegans (Ou et al., 2005). The formation of a membrane-

ous fan containing a subset of cilia-targeted transmembrane

proteins in response to reduced sensory signaling, and the re-

quirement of kinesin-II in this process, raised the possibility

that BBS and/or RAB8 proteins may play a role in the formation
770 Developmental Cell 14, 762–774, May 2008 ª2008 Elsevier Inc.
of these altered structures. Homologs of many BBS proteins are

encoded by the C. elegans genome (Blacque et al., 2004; Li et al.,

2004; Ou et al., 2005). C. elegans RAB-8 and RAB-10 are related

to mammalian RAB8 and play roles in vesicle trafficking and en-

docytic recycling, respectively, in nonneuronal tissues (Chen

et al., 2006; Kamikura and Cooper, 2006). Both proteins are ex-

pressed broadly in C. elegans, including in neurons (Chen et al.,

2006; S.M. and P.S. unpublished data).

Consistent with observations in channel cilia (Blacque et al.,

2004), mutations in single bbs genes such as bbs-7 caused trun-

cated AWB cilia at a low penetrance, although no gross defects

were observed in bbs-8, bbs-1, rab-8, and rab-10 single mutants

(Table 3; Figure S3). However, mutations in all three bbs genes,

as well as in both rab-8 and rab-10, suppressed the odr-1 and

tax-4 phenotypes of the fan in the AWB cilia (Table 3;

Figure S3). The area of STR-1::GFP localization corresponded

to the area of the ciliary membrane in examined single and
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double mutants (Figure 3A). arl-3 also encodes a small GTPase

and is expressed in ciliated neurons (Blacque et al., 2005). No

suppression was observed upon loss of arl-3 (Table 3), indicating

the specific requirement for RAB-8/10 in this process. Surpris-

ingly, animals doubly mutant for odr-1 and all three bbs genes

exhibited synergistic enhancement of the truncated AWB cilia

phenotype (Table 3; Figure S3). Moreover, overexpression of

a constitutively activated RAB-8 protein in the AWB neurons re-

sulted in a loss of AWB ciliary branches (Table 3; Figure S3).

These data imply that BBS- and RAB-8-related proteins are re-

quired for the formation of the membraneous fans and localiza-

tion of transmembrane proteins to the fans in sensory signaling

mutants. Moreover, both BBS proteins and RAB-8 may regulate

axoneme length.

DISCUSSION

Our results indicate that sensory signal transduction is a critical

regulator of AWB cilia architecture. Several lines of evidence are

consistent with this hypothesis. First, we showed that molecules

previously implicated in mediating sensory signal transduction in

C. elegans as well as in more complex organisms also regulate

AWB ciliary structure in a cell-autonomous manner. Second,

the AWB ciliary structural phenotypes of signaling mutants could

be phenocopied by growing wild-type animals in chemically de-

fined media lacking bacterially derived chemosensory cues and

could be suppressed upon the addition of bacteria. The forma-

tion of altered ciliary structures in both signaling mutants and

food-deprived animals required kinesin-II function. Third, in-

creasing levels of intracellular second messengers such as

cGMP and Ca2+ required for sensory signal transduction were

sufficient to bypass the AWB ciliary phenotypes of subsets of

signaling mutants. Increased cGMP levels also suppressed fan

formation in wild-type AWB cilia. Fourth, we found that the

TAX-2 cyclic nucleotide-gated channel was required during

late larval stages to maintain AWB ciliary morphology. TAX-2

has also previously been shown to act late in development to

mediate sensory behaviors, and sensory activity has previously

been implicated in the maintenance of correct axonal morphol-

ogy of a subset of amphid sensory neurons (Coburn et al.,

1998; Peckol et al., 1999). Taken together, these data suggest

that the AWB neurons monitor sensory activity to regulate ciliary

membrane biogenesis and axoneme length.

What are the mechanisms that translate levels of sensory sig-

naling into remodeling of ciliary architecture? Activity-regulated

ciliary remodeling requires kinesin-II, members of the BBS com-

plex, and the small GTPases RAB-8 and RAB-10, which may act

partly redundantly with each other. RAB8 is critical for vesicle

trafficking from the trans-Golgi network to the plasma mem-

brane, and it is required for the delivery of rhodopsin-containing

vesicles to the base of the connecting cilium in photoreceptors

(Deretic et al., 1995; Huber et al., 1993; Moritz et al., 2001;

Nachury et al., 2007). Moreover, RAB8 enters and moves in the

primary cilia of cultured cells (Nachury et al., 2007). Loss of

RAB8 function diminishes ciliogenesis in primary cultured cells,

whereas expression of a constitutively activated RAB8 results

in increased cilia length (Nachury et al., 2007). However,

we find that overexpression of a constitutively activated RAB-8

protein results in marked shortening of AWB cilia, suggesting
D

that RAB-8 may inhibit cilia length but promote membrane bio-

genesis in AWB cilia. Kinesin-II, but not OSM-3, is also essential

for activity-regulated modulation of AWB ciliary architecture,

consistent with our previous findings that kinesin-II is the primary

motor in AWB cilia (Mukhopadhyay et al., 2007). We did not ob-

serve any defects in the velocity of IFT motors or particles in the

AWB cilia in signaling mutants, indicating that the core IFT pro-

cess is unlikely to be affected upon reduction of sensory activity

levels. In the simplest model, we suggest that reduced sensory

activity (perhaps monitored via levels of intracellular cGMP or

Ca2+) increases RAB-8 and possibly RAB-10 functions, thereby

altering the rate of vesicle trafficking to the plasma membrane,

or the rate of vesicle docking and fusion at the ciliary base. Kine-

sin-II-mediated IFT may then transport these membrane-associ-

ated cargo into the cilia, resulting in modulation of membrane

biogenesis. The BBS proteins may also play a role in this process

by coupling the membrane to the IFT complex, or by regulating

IFT particle assembly (Blacque et al., 2004; Ou et al., 2005).

What is the functional consequence of altering membrane ar-

chitecture in response to sensory signaling? Reducing sensory

activity results in expansion of the membraneous fans that con-

tain subsets of signaling proteins. As a result, the overall layout of

these molecules in the membrane is markedly distinct from that

in wild-type cilia, which lack large fans. Although we are unable

to determine whether the total number of protein molecules lo-

calized to the cilia is increased upon reduction of sensory activ-

ity, the more distributed localization of these molecules over the

fan-like structure may enhance the olfactory receptivity and sen-

sitivity of the AWB neurons (Takeuchi and Kurahashi, 2008). This

enhancement may be necessary to compensate for decreased

sensory signaling, thereby allowing animals to retain sensitivity

to environmental signals. Altered trafficking and localization of

ciliary membrane proteins may thus represent a homeostatic

mechanism to maintain sensory activity levels. It is interesting

to note that distribution of the TAX-2 channel is not regulated

in a similar manner despite the predicted transmembrane topol-

ogy of TAX-2, indicating that distribution of ciliary membrane

proteins to the fan is not simply a passive process, but is highly

regulated. A related mechanism has been proposed in ‘‘photo-

stasis,’’ by which rod photoreceptors alter their outer segment

physiology and rhodopsin levels to compensate for their light en-

vironment. Thus, rats raised under dim (bright) light exhibited

longer (shorter) outer segments and increased (decreased) rho-

dopsin levels (Penn and Williams, 1986; Williams et al., 1999). We

speculate that the observed variability in AWB cilia structure

in wild-type animals raised under standard conditions reflects

animal-to-animal differences in sensory experiences.

Although we focus only on the cilia of the AWB neurons, the

effects of activity are also detected on the maintenance of AWC

olfactory neuron cilia (S.M. and P.S., unpublished data; Roayaie

et al., 1998). Kinesin-II has also been suggested to play a role in

the transport of sensory molecules to the AWC olfactory neuron

cilia after ciliary assembly (Evans et al., 2006). However, no ef-

fects were observed on channel cilia. Expression of an activated

G protein was shown to affect dye uptake by channel cilia, al-

though no obvious structural abnormalities were detected

(Zwaal et al., 1997). It is possible that these homeostatic mech-

anisms operate in only a subset of cell types, whose functions

are critical to the survival of the animal. For example, the AWB
evelopmental Cell 14, 762–774, May 2008 ª2008 Elsevier Inc. 771
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neurons mediate responses to chemicals produced by patho-

genic bacteria (Pradel et al., 2007; Troemel et al., 1997), and

loss or reduction of function of this important neuron type is likely

to have severe consequences. Thus, it may be important for the

animal to evolve regulatory mechanisms to maintain appropriate

levels of AWB sensory function.

Taken together, we describe a remarkable degree of plastic-

ity in cilia structure in C. elegans, which is likely to have impor-

tant consequences on cellular function. This activity-regulated

modulation of cilia architecture and protein localization bears

striking resemblance to mechanisms regulating postsynaptic

plasticity in the mammalian nervous system. Regulated traf-

ficking of membrane proteins such as AMPA receptors and

K+ channels, as well as modulation of cellular morphology in

response to synaptic activity, has been shown to underlie

many aspects of neuronal plasticity and homeostasis (Colling-

ridge et al., 2004; Turrigiano and Nelson, 2004; Kennedy and

Ehlers, 2006). Similar to our observations regarding the re-

quirement for RAB8 in membrane protein trafficking in the

AWB cilia in sensory mutants, RAB8 has also been implicated

in activity-regulated trafficking of AMPA receptors (Gerges

et al., 2004). In addition, the morphology of neuronal structures

such as dendritic spines are highly dynamic, are regulated by

synaptic and sensory activity, and contribute to the modulation

of neuron function (Alvarez and Sabatini, 2007). Thus, similar to

the postsynapse, modulation of cilia structure and/or traffick-

ing of membrane-localized signaling proteins in response to

sensory activity may provide an effective mechanism by which

cellular homeostasis is regulated and maintained. In this re-

spect, the cilia may be considered postsynaptic to presynaptic

environmental stimuli (Shaham, 2006). Given the critical role

of cilia in the function of multiple cell types, it will be important

to determine whether similar plasticity mechanisms operate

to regulate cilia function and structural diversity in higher

organisms.

EXPERIMENTAL PROCEDURES

Strain Construction

Strains were obtained from the Caenorhabditis Genetics Center, the National

Bioresource Project (Japan), and Cori Bargmann. Stably integrated strains

used in this work were: kyIs104 (str-1p::gfp) (Troemel et al., 1997), odr-

3(Q206L)XS (Roayaie et al., 1998), oyIs14 (sra-6p::gfp) (Troemel et al., 1997),

and kyIs128 (str-3p::gfp) (Peckol et al., 1999). Double or triple mutant strains

were constructed by using standard methods.

Molecular Biology

str-1 promoter-driven cDNA constructs were generated by inserting 3 kb of

str-1 upstream regulatory sequences together with the respective cDNAs

into C. elegans expression vectors. A subset of cDNAs was tagged with

GFP-encoding sequences at their C-terminal ends. Full-length gfp-tagged

str-1 and srd-23 fusion constructs have been described previously (Colosimo

et al., 2004; Dwyer et al., 2001). The gfp-tagged grk-2 construct and grk-2

cDNA were obtained from D. Ferkey (Fukuto et al., 2004). rab-8p::gfp and

egl-19p::gfp fusion constructs were generated by the PCR-fusion method

(Hobert, 2002). All plasmids were verified by sequencing.

Transgenic strains were generated by injecting plasmids at 30 ng/ml, except

for str-1 promoter-driven gfp-tagged tax-2 and odr-3 cDNAs and full-length

gfp-tagged str-1 and srd-23 constructs, which were injected at 5 ng/ml. The

str-1p::rab-8(Q67LXS) plasmid was injected at 100 ng/ml. unc-122::dsRed

was used as the coinjection marker in all cases.
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Microscopy

Images were acquired on a Zeiss Axioplan microscope equipped with a CCD

camera (Hamamatsu). Fan area and cilia branch lengths were quantified by

using OpenLab 4.0 software (Improvision).

Confocal images were acquired with a Leica spectral confocal microscope

equipped with 633/1.4 NA and 1003/1.4 NA objectives. Volumetric represen-

tations of cilia and calculations of total membrane surface area were per-

formed by three-dimensional rendering of stacks of confocal images by using

the Amira 4.1.1 graphics package.

Electron Microscopy

Adult hermaphrodites were fixed, stained, embedded in resin, and serially sec-

tioned by using standard methods (Lundquist et al., 2001). Imaging was per-

formed with an FEI Tecnai G2 Spirit BioTwin transmission electron microscope

equipped with a Gatan 4K 3 4K digital camera. Images of serial sections were

processed, aligned, and modeled as surface renderings by using the IMOD

3.9.3 package (http://bio3d.colorado.edu/imod/; Kremer et al., 1996).

Growth in CeMM

Animals were cultured in CeMM media (generous gift of Nathaniel Szewczyk

and Lewis Jacobson and custom made by Mediatech) according to previous

protocols (Szewczyk et al., 2003). In brief, gravid animals from 2–3 6 cm NGM

plates seeded with HB101 bacteria were bleached and washed in M9 buffer to

release eggs and kill bacteria. Growth-synchronized, arrested L1 larvae were

obtained by allowing these eggs to hatch by overnight incubation in M9 buffer.

L1 larvae were then suspended in 13 CeMM liquid media or were cultured

on CeMM plates containing 1.7% agar at 20�C in the dark. CeMM-cultured

animals typically grew to the adult stage in 6–8 days.

Statistical Analyses

Analyses were performed by using the SPSS 13 statistical analyses package.

Percentages were compared by using a chi-square test. Fan areas were com-

pared by using a nonparametric independent sample Mann-Whitney U test for

nonnormal distributions; cilia lengths were compared by using the indepen-

dent sample t test.

SUPPLEMENTAL DATA
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