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ABSTRACT 23 

Glia in the central nervous system engulf neuron fragments to remodel synapses and recycle 24 

photoreceptor outer-segments. Whether glia passively clear shed neuronal debris, or actively 25 

prune neuron fragments is unknown. How pruning of single-neuron endings impacts animal 26 

behavior is also unclear. Here we report our discovery of glia-directed neuron pruning in C. 27 

elegans. Adult C. elegans AMsh glia engulf sensory endings of the AFD thermosensory neuron 28 

by repurposing components of the conserved apoptotic corpse phagocytosis machinery. The 29 

phosphatidylserine (PS) flippase TAT-1/ATP8A, functions with glial PS-receptor PSR-1/PSR and 30 

PAT-2/α-integrin to initiate engulfment. This activates glial CED-10/Rac1 GTPase through the 31 

ternary GEF complex of CED-2/CrkII, CED-5/DOCK180, CED-12/ELMO. Execution of 32 

phagocytosis uses the actin-remodeler WSP-1/nWASp. This process dynamically tracks AFD 33 

activity and is regulated by temperature, the AFD sensory input. Importantly, glial CED-10 34 

levels regulate engulfment rates downstream of neuron activity, and engulfment-defective 35 

mutants exhibit altered AFD-ending shape and thermosensory behavior. Our findings reveal a 36 

molecular pathway underlying glia-dependent engulfment in a peripheral sense-organ, and 37 

demonstrate that glia actively engulf neuron-fragments, with profound consequences on 38 

neuron shape and animal sensory behavior. 39 

 40 

IMPACT STATEMENT 41 

A peripheral sense-organ glial cell actively engulfs fragments of a sensory-neuron ending to 42 

modify neuron shape and associated animal behavior in C. elegans. 43 

 44 

KEYWORDS 45 

Glia, sensory systems, phagocytosis, pruning, small GTPase CED-10/Rac1,  thermotaxis,   46 
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INTRODUCTION 47 

To interpret its environment accurately and respond with appropriate behaviors, an animal ’s 48 

nervous system needs to faithfully transmit information from the periphery and through 49 

neuron-neuron contacts within the neural network. Precision in this information transfer and 50 

processing depends partly on neuron receptive endings (NREs), specialized sub-cellular 51 

structures where a neuron receives input from either the external environment or other 52 

neurons (Bourne and Harris, 2008; Harms and Dunaevsky, 2007; Shaham, 2010; Singhvi et al., 53 

2016). In the peripheral nervous system (PNS), sensory NREs house the sensory transduction 54 

machinery, and appropriate NRE shape is important for sensory information capture. In the 55 

central nervous system (CNS), the size and number of interneuron NREs (dendritic spines) help 56 

determine the connectome and thereby the path of information transfer (Bargmann and 57 

Marder, 2013; Eroglu and Barres, 2010; Nimchinsky et al., 2002). While remodeling of NRE 58 

shape has been suggested to be important for experiential learning and memory (Bourne and 59 

Harris, 2008; Harms and Dunaevsky, 2007), directly correlating these subcellular changes with 60 

animal behavior has been challenging.  61 

Glia are a major cell-type of the nervous system and approximate neurons in number 62 

(von Bartheld et al., 2016). They have been proposed to actively modulate development, 63 

homeostasis and remodeling of neural circuits, and are thought to influence NRE shape and 64 

numbers (Allen and Eroglu, 2017; Stogsdill and Eroglu, 2017; Zuchero and Barres, 2015). One 65 

mechanism by which glia may do so is by engulfment of neuron fragments, including NREs 66 

(Freeman, 2015; Schafer and Stevens, 2013; Wilton et al., 2019). Aberrant neuron fragment 67 

uptake by glia is implicated in neuro-developmental as well as neuro-degenerative diseases 68 
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including Alzheimer’s dementia, Autism and Epilepsy (Chung et al., 2015; Henstridge et al., 69 

2019; Neniskyte and Gross, 2017; Schafer and Stevens, 2013; Vilalta and Brown, 2018; Wilton 70 

et al., 2019).  71 

Fundamental questions about the roles and mechanisms of glia-dependent 72 

phagocytosis remain. Whether glia initiate engulfment or passively respond to neuron 73 

shedding is unclear. Furthermore, correlating glia-dependent remodeling at single synapse or 74 

NREs with changes in animal behavior remains impossible in most systems (Koeppen et al., 75 

2018; Wang et al., 2020). Also, glial engulfment mechanisms have been primarily dissected in 76 

the context of injury or development, and their impact on adult neural functions remains less 77 

understood. Finally, whether glia-dependent engulfment occurs in the peripheral nervous 78 

system or dictates normal sensory functions has not been extensively explored.   79 

The nervous system of the adult C. elegans hermaphrodite is comprised of 300 neurons 80 

and 56 glial cells (Singhvi and Shaham, 2019; Sulston et al., 1983; White et al., 1986). These 81 

arise from invariant developmental lineages, form invariant glia-neuron contacts, and each 82 

neuron performs defined functions to enable specific animal behaviors. These features allow 83 

single-cell and molecular analyses of individual glia-neuron interactions with exquisite 84 

precision (Singhvi et al., 2016; Singhvi and Shaham, 2019).  85 

Here, we describe our discovery that the C. elegans AMsh glial cell engulfs NRE  86 

fragments of the major thermosensory neuron of the animal, AFD. Thus, this critical glial 87 

function is conserved in the nematode and across sense-organ glia. We find that engulfment 88 

requires the phospholipid transporter TAT-1/ATP8A, α- integrin PAT-2, and glial 89 

phosphatidylserine receptor PSR-1. PSR-1 engages a conserved ternary GEF complex (CED-90 
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2/CrkII, CED-5/DOCK180, CED-12/ELMO1) to activate CED-10/Rac1 GTPase. The actin 91 

remodeling factor WSP-1/nWASp, a known effector of CED-10, acts in AMsh glia to regulate 92 

engulfment. We also show that glial engulfment rates are regulated by temperature and track 93 

AFD neuron activity. Importantly, glial CED-10/Rac1 acts downstream of neuron activity, and 94 

CED-10 expression levels dictate NRE engulfment rates. Finally, perturbation of glial 95 

engulfment leads to defects in AFD-NRE shape and associated animal thermosensory behavior. 96 

Our studies show that glia actively regulate engulfment by repurposing components of the 97 

apoptotic phagocytosis machinery. Importantly, while cell corpse engulfment is an all-or-none 98 

process, glia-dependent engulfment of AFD endings can be dynamically regulated. We propose 99 

that other glia may similarly deploy regulated phagocytosis to tune sensory NREs and 100 

synapses, and to dynamically modulate adult animal behaviors. 101 

 102 

RESULTS 103 

C. elegans glia engulf fragments of the AFD neuron receptive-ending 104 

Glia of the nematode C. elegans share molecular, morphological, and functional features with  105 

vertebrate sense-organ glia and astrocytes (Bacaj et al., 2008a; Katz et al., 2018; Katz et al., 106 

2019; Lee et al., 2021; Singhvi and Shaham, 2019; Wallace et al., 2016).  In previous studies, 107 

we established the AMsh glia-AFD neuron pair as a tractable experimental platform to define 108 

molecular mechanisms of single glia-neuron interactions (Singhvi et al., 2016; Singhvi and 109 

Shaham, 2019; Wallace et al., 2016). The AFD NRE is comprised of ~45 actin-based microvilli 110 

and a single microtubule-based cilium that are embedded in the AMsh glial cell. An adherens 111 

junction between the AFD NRE base and the AMsh glial cell isolates this glia-NRE compartment  112 
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(Figure 1A-B) (Doroquez et al., 2014; Perkins et al., 1986).  113 

Upon imaging fluorescently labeled AFD NREs in transgenic animal strains, we 114 

consistently observed labeled fragments disconnected from the neuron (Figure 1C-C’; Video 115 

1). Our previous reconstructions based FIB-SEM serial section data, had also revealed AFD NRE 116 

fragments disconnected from the rest of the AFD neuron (marked yellow, Movie 1) in (Singhvi 117 

et al., 2016). We examined this further using two-color imaging, which revealed that many of 118 

these fragments reside within the AMsh glial process and cell body (Figure 1D-F’, Video 2). To 119 

confirm that these glial puncta do not reflect spurious reporter protein misexpression in glia 120 

but rather derive from the AFD, we ablated AFD neurons early in larval development and 121 

looked for puncta on the first day of adulthood. Upon ablation of one of the two bilateral AFD 122 

neurons by laser microsurgery in first larval stage (L1) animals, fragment formation was 123 

blocked on the operated side, but not on the un-operated side, or in mock-ablated animals 124 

(Figure 1G-H). Similar results were seen with stochastic genetic ablation of AFD using the pro-125 

apoptotic BH3-domain protein EGL-1, expressed using an embryonic AFD specific promoter 126 

(Figure 1I). We conclude, therefore, that AMsh glia engulf fragments of the AFD NRE in C. 127 

elegans.  128 

3D super-resolution microscopy studies revealed that the average size of AFD-derived 129 

glial puncta is 541 ± 145 nm along their long (yz) axis (Figure 2A). These fragments are an order 130 

of magnitude smaller than recently described exophers extruded from neurons exposed to 131 

cellular stress (~3.8 µm in diameter), and larger than ciliary extracellular vesicles (~150nm) 132 

(Chung et al., 2013; Melentijevic et al., 2017; Wang et al., 2014). This size is of the same order 133 

of magnitude as the sizes of individual AFD NRE microvilli or cilia as measured by electron 134 
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microscopy (Figure 2B, Figure 2-figure supplement 1A) and (Doroquez et al., 2014).  135 

 136 

AMsh glia engulfment of AFD NREs occurs in adults 137 

Engulfment of neuronal fragments by glia has been suggested to refine neuronal circuit 138 

connectivity during neural development (Chung et al., 2013; Wilton et al., 2019). Post 139 

development, glial engulfment is thought to regulate animal behaviors and memory (Koeppen 140 

et al., 2018; Wang et al., 2020). To determine when C. elegans AMsh glia initiate engulfment of 141 

AFD NRE fragments, we counted engulfed NRE puncta at different life stages. We found that 142 

these puncta are rarely found in embryos or early larval stages, but are easily detected in L4 143 

larvae, and increase in numbers during adulthood (Figure 2C, D). Thus, consistent with L1 laser 144 

ablation studies (Figure 1G-I), engulfment of AFD NREs by glia occurs after development of the 145 

AFD NRE is largely complete. 146 

We found that ~65% of Day 1 adult animals expressing the AFD NRE-specific gcy-8:GFP 147 

raised at 20oC have AMsh glia containing >10 puncta, and another ~32% of animals have 1-9 148 

puncta/glia (n=171) (Figure 2C) (see Methods for binning details). The AMsh glial cell of one-149 

day-old adults has on average, 14 ± 1 puncta (n=78) (Figure 2D). Using time-lapse microscopy, 150 

we found that individual puncta separate from the NRE at a frequency of 0.8 ± 0.3 151 

events/minute, and travel at 1.05 ± 0.1 µm/sec down the glial process towards the cell body, 152 

consistent with motor-protein-dependent retrograde trafficking (quantifications of videos 153 

from n=5 animals) (Figure 2-figure supplement 1B; Videos 1 and 2)(Maday et al., 2014; Paschal 154 

et al., 1987). Finally, age-matched animals raised at different cultivation temperatures differ in 155 

glia puncta accumulation (Figure 2E). 156 
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 157 

AMsh glia engulf AFD-NRE microvilli but not cilia  158 

AFD NREs are comprised of microvilli and a single cilium (Figure 1B). The size of puncta we 159 

 observed (541 ± 145 nm, Figure 2A) was similar to the sizes of both the microvilli (214 ± 30 160 

nm) (Figure 2B, Figure 2-figure supplement 1A), and AFD cilium (264 ± 13 nm) (Doroquez et al., 161 

2014), precluding easy inference of the source of these puncta. To distinguish which organelle 162 

was engulfed, we undertook two approaches. First, we labeled each organelle with specific 163 

fluorescent tags and examined uptake by AMsh glia. To probe microvilli, we examined 164 

transgenic animals labelled with either of four AFD-microvilli specific proteins with fluorescent 165 

tags, SRTX-1, GCY-8, GCY-18 and GCY-23 (Colosimo et al., 2004; Inada et al., 2006). We found 166 

that all four transgenic strains consistently show fluorescent puncta in glia (Figure 3A, Figure 167 

1). Time-lapse microscopy of one of these (Psrtx-1:SRTX-1:GFP) also revealed that fragments 168 

originate from the AFD NRE microvilli (Figure 2 Figure supplement 1B; Videos 1 and 2). To label 169 

cilia, we generated transgenic animals with the ciliary protein DYF-11/TRAF31B1 fluorescently 170 

tagged and expressed under an AFD-specific promoter and confirmed that PAFD:DYF-11:GFP 171 

localizes to AFD cilia (Figure 3B). However, we found no DYF-11:GFP puncta in AMsh glia 172 

(Figure 3A). 173 

In a complementary approach, we examined mutants lacking either microvilli or cilia. 174 

The development of AFD, including its microvilli (but not cilia), requires the terminal selector 175 

transcription factor TTX-1/Otx1/Orthodenticle (Hobert, 2016; Satterlee et al., 2001). We found 176 

that ttx-1(p767) mutants lack AFD NRE puncta in AMsh glia (Figure 3C-E). Cilia development 177 

requires the IFT-B early assembly proteins DYF-11/TRAF31B1 and OSM-6/IFT52. Both are 178 
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expressed in most, if not all, ciliated neurons, and mutations in the respective genes exhibit 179 

defective amphid cilia (Bacaj et al., 2008a; Collet et al., 1998; Kunitomo and Iino, 2008; Li et 180 

al., 2008; Perkins et al., 1986; Starich et al., 1995). In contrast to ttx-1 mutants, glia puncta 181 

were present in animals mutant for either dyf-11(mn392) or osm-6(p811) (Figure 3C-E). In fact 182 

and on the contrary, we found that dyf-11 cilia-defective mutants accumulate more glial 183 

puncta that wild-type animals (dyf-11: 38 ± 3 puncta, n=27 vs. wild type: 14 ± 1, n=78,  (Figure 184 

3C,E); and a larger fraction of dyf-11 and osm-6 mutants exhibit >10 puncta/glia (dyf-11: 95%, 185 

n= 61 animals, osm-6: 100% animals, n=82, vs. wild-type: 65%, n=171) (Figure 3D). This 186 

indicates that cilia are likely not the primary source of glia puncta.  187 

Data from all these approaches taken together suggest that that the observed puncta 188 

in AMsh glia derive from AFD NRE microvilli as the primary, if not sole, source. 189 

 190 

The phospholipid transporter TAT-1 regulates glial engulfment  191 

What molecular mechanism drives AFD NRE microvilli engulfment? In other contexts, neurons 192 

expose the membrane phospholipid phosphatidylserine (PS) on the outer leaflet of the plasma 193 

membrane as a signal for glial phagocytosis (Hakim-Mishnaevski et al., 2019; Li et al., 2020; 194 

Nomura-Komoike et al., 2020; Raiders et al., 2021; Scott-Hewitt et al., 2020). However, the 195 

underlying molecular mechanisms that regulate this exposure in neurons is unclear. Apoptotic 196 

corpse phagocytosis, including in C. elegans, is also mediated by PS exposure (Figure 4A). PS-197 

exposure in apoptotic cells is promoted partially by the Xkr8 factor CED-8, which is cleaved by 198 

the caspase CED-3 to promote PS-presentation for cell-corpse phagocytosis (Bevers and 199 

Williamson, 2016; Wang et al., 2007). However, mutations in neither ced-8 (Figure 4B) nor ced-200 
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3 (data not shown) affect glial NRE uptake. Likewise, mutations in scrm-1, encoding a 201 

scramblase promoting PS exposure (Wang et al., 2007), only mildly decrease AFD NRE 202 

engulfment (Figure 4B).  However, a presumptive null mutation in tat-1, an ortholog of 203 

mammalian translocase ATP8A required for PS sequestration to the plasma membrane inner 204 

leaflet (Andersen et al., 2016), results in increased apoptotic cell corpse engulfment (Darland-205 

Ransom et al., 2008; Hong et al., 2004) and AFD NRE engulfment (Figure 4B, E). Thus, common, 206 

and context-specific mechanisms control apoptotic and NRE engulfment. Importantly, re-207 

expression of wild type tat-1 cDNA under an AFD specific promoter fully rescues the tat-1 208 

engulfment defect (Figure 4B). We conclude that cell-autonomous function of the PS-flippase  209 

TAT-1 in the AFD neuron regulates engulfment of AFD NRE fragments by AMsh glia. 210 

 211 

The PS receptor PSR-1 acts with the transthyretin TTR-52 to mediate glial engulfment  212 

How is PS on the AFD membrane recognized by AMsh glia? To address this question, we 213 

examined mutants in receptors required for C. elegans apoptotic cell engulfment (Figure 4A). 214 

CED-1/Draper/MEGF10 is required for removal of neuron debris in many contexts (Cherra and 215 

Jin, 2016; Mangahas and Zhou, 2005; Nichols et al., 2016), including by glia in other species 216 

(Chung et al., 2013; Freeman, 2015; Hamon et al., 2006; Raiders et al., 2021). Surprisingly, two 217 

independent ced-1 loss-of-function alleles do not block NRE fragment uptake (Figure 4C). 218 

Similarly, disrupting CED-6/GULP and CED-7/ABCA1, which function with CED-1/MEGF10 in C. 219 

elegans apoptotic phagocytosis and in other species (Flannagan et al., 2012; Hamon et al., 220 

2006; Morizawa et al., 2017; Reddien and Horvitz, 2004; Zhou et al., 2001), does not block 221 

engulfment either (Figure 4C). Further, mutations in tyrosine kinases related to MeRTK, 222 
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required for astroglial engulfment of neuronal debris in vertebrates (Chung et al., 2013) also 223 

seem to not be required for AMsh engulfment of AFD NRE (Figure 4-figure supplement 1A) 224 

(Popovici, 1999). 225 

Loss of the conserved phosphatidylserine receptor PSR-1/PSR has defects in apoptotic  226 

cell corpse engulfment in C. elegans and zebrafish (Hong et al., 2004; Wang et al., 2003). 227 

Remarkably, deletion of psr-1 dramatically reduces AFD NRE engulfment by AMsh glia (Figure 228 

4D, 4E). Expression of the PSR-1C long isoform in AMsh glia rescues psr-1 mutant defects 229 

significantly (Figure 4D), suggesting that PSR-1 acts in glia to promote NRE uptake. Consistent 230 

with this function, a GFP:PSR-1 translational reporter expressed under an AMsh-glia specific 231 

promoter localizes to glial membranes, including those around AFD NRE microvilli (Figure 4F- 232 

F’). 233 

If PSR-1 recognizes PS on AFD NRE membranes to mediate engulfment, we reasoned it 234 

should act downstream of TAT-1. We therefore constructed and analyzed psr-1; tat-1 double 235 

mutants. Unlike tat-1 single mutants that show increased NRE engulfment, psr-1; tat-1 animals 236 

exhibit reduced engulfment similar to psr-1 single mutants (Figure 4D). Thus, PSR-1 acts 237 

downstream of TAT-1.  238 

The transthyretin protein TTR-52 mediates binding between PS and PSR-1 (Neumann et 239 

al., 2015; Wang et al., 2010). Supporting the PSR-1 results we found that a mutation in ttr-52 240 

also reduces NRE uptake to a similar extent as mutations in psr-1 (Figure 4D). In addition, we 241 

found that psr-1; ttr-52 double mutants show no significant enhancement of puncta defects 242 

compared to either single mutant, suggesting that PSR-1 and TTR-52 function within the same 243 

pathway for PS recognition by AMsh glia (Figure 4D). 244 
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 245 

Integrin α-subunit PAT-2 regulates glial engulfment with PSR-1 246 

Although psr-1 loss reduces puncta numbers (and by inference, NRE engulfment) dramatically, 247 

we noted that neuronal fragment uptake is not completely eliminated (Figure 4D). This 248 

suggested that another receptor may be involved. Integrins function with MeRTK to promote 249 

photoreceptor cell outer segment engulfment by retinal RPE glia (Mao and Finnemann, 2012), 250 

and the C. elegans genome encodes two α-integrin subunits, INA-1 and PAT-2, both of which 251 

are implicated in apoptotic cell phagocytosis in C. elegans (Hsieh et al., 2012; Neukomm et al., 252 

2014; Saenz-Narciso et al., 2016). We found that while a mutation in ina-1 has no effect on 253 

NRE engulfment (Figure 4-figure supplement 1A), loss of PAT-2 by RNA interference (RNAi) 254 

significantly blocks AFD NRE phagocytosis (Figure 4G). Further, pat-2 RNAi strongly enhances 255 

glia engulfment defects of psr-1 mutants (Figure 4G). Thus, PAT-2/ α-integrin and PSR-1 appear 256 

to act together for glial engulfment of AFD NRE. 257 

Curiously, not only do mutations in ced-1 not block the appearance of puncta in glia, 258 

we found that ced-1(e1754) strong loss-of function mutant animals actually exhibit enhanced 259 

puncta numbers compared to wild-type animals (Figure 4C). We found that pat-2 RNAi did not 260 

block this enhanced engulfment defect of ced-1(e1754) animals (Figure 4-figure supplement 261 

1B), suggesting that  PAT-2 and CED-1 likely do not function synergistically as PS-receptors for 262 

glia-dependent phagocytosis. In line with this, while psr-1 ced-1 double mutant animals exhibit 263 

a slightly higher fraction of animals with no puncta, ced-1 in fact suppresses the synergistic 264 

engulfment defects seen in psr-1; pat-2(RNAi) animals (Figure 4-figure supplement 1B). This 265 

suggests that either ced-1 has a minor role in engulfment as a PS-receptor, or its role in this 266 
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glia-dependent phagocytosis is non-canonical. To examine this further, we also asked if ttr-52 267 

acts with ced-1. The ced-1;ttr-52 double mutant had the same increased glia puncta as ced-1 268 

single mutants, suggesting that ced-1 acts genetically downstream of ttr-52 (Figure 4-figure 269 

supplement 1C). Finally, the ced-1; ttr-52; psr-1 triple mutant also phenocopied ced-1 single 270 

mutants in having increased number of glia puncta, suggesting again that CED-1 acts 271 

downstream of PSR-1 and TTR-52. These data raise the possibility that in NRE engulfment, 272 

CED-1 may instead act in phagolysosome maturation downstream of PS recognition, as has 273 

been observed for CED-1 in other contexts (Yu et al., 2006). 274 

 275 

The CED-2/5/12 ternary GEF complex acts in AMsh glia to promote engulfment 276 

The ternary complex of CED-2/CrkII, CED-5/DOCK1 and CED-12/ELMO1 acts downstream of 277 

PSR-1 for apoptotic cell engulfment (Reddien and Horvitz, 2004; Wang et al., 2003). We found 278 

that animals bearing mutations in ced-2, ced-5, or ced-12 exhibit reduced AFD NRE puncta in 279 

AMsh glia (Figure 5A). Furthermore, expression of the CED-12B isoform in AMsh glia is 280 

sufficient to rescue ced-12 mutant defects (Figure 5A). We conclude, therefore, that the CED-281 

2/CED-5/CED-12 complex also likely regulates engulfment of AFD NREs.  282 

 283 

Glial Rac1 GTPase CED-10 controls rate of engulfment  284 

CED-2/CED-5/CED-12 act as a GEF for the Rac1 GTPase CED-10, a major downstream effector 285 

of a number of apoptotic phagocytosis pathways (Flannagan et al., 2012; Reddien and Horvitz, 286 

2004; Wang and Yang, 2016) (Figure 4A). CED-10 is also implicated in engulfment of 287 

photoreceptor outer segments by RPE glia-like cells in mammals and debris of injured axons by 288 
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glia in Drosophila (Kevany and Palczewski, 2010; Lu et al., 2014; Nichols et al., 2016). We found 289 

that two loss-of-function mutations in ced-10, or overexpression of dominant-negative CED-290 

10T17N, block nearly all engulfment of AFD NRE fragments by AMsh glia (Figure 5B-D). 291 

Specifically, in two different alleles, very few puncta are observed in glia (ced-10(n3246)(3.08 ± 292 

0.79, n=39) and ced-10(n1993) (2.4 ± 0.6 puncta, n=24 animals) vs. wild type (14 ± 1 puncta, n=78 293 

animals). Furthermore, barely any mutant animal had >10 puncta (ced-10(n3246) = 0.81%, n=124; 294 

and, ced10(n1993) = 2.78%, n=72; compared to wild type = 64%, n=171). Expressing CED-10 only 295 

in AMsh glia completely restores engulfment to ced-10 loss-of-function mutants (Figure 5B-D).  296 

To determine how CED-10 functions with respect to CED-2/CED-5/CED-12 and PSR-1, 297 

we generated psr-1; ced-10 and ced-12; ced-10 double mutants. Both strains show strong 298 

defects in puncta numbers reminiscent of ced-10 single mutants (Figure 5E). Furthermore, 299 

transgenic expression of CED-10 is sufficient to overcome the partial loss of NRE engulfment in 300 

psr-1 mutants (Figure 5E). Our data are consistent with the interpretation that, like in cell 301 

corpse engulfment, CED-10/Rac1 GTPase likely functions in glia downstream of CED-2/CED-302 

5/CED-12 and PSR-1, to promote AMsh glial engulfment of NREs. This activation is specific, as 303 

mutations in another CED-10 activator, UNC-73/TRIO, does not affect NRE uptake (Figure 4-304 

figure supplement 1A) (Lundquist et al., 2001; Saenz-Narciso et al., 2016). 305 

Unexpectedly, expression of constitutive active CED-10G12V also results in reduced 306 

engulfed puncta (Figure 5D). This may indicate that a GTPase cycle is needed for engulfment to 307 

proceed (Bernards and Settleman, 2004; Saenz-Narciso et al., 2016; Singhvi et al., 2011; Takai 308 

et al., 2001; Teuliere et al., 2014). Alternatively, it may be that this form of the protein 309 

promotes hyper-efficient engulfment, which does not leave much NRE to be engulfed. 310 
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Supporting the latter model, the AFD NRE is significantly shorter in CED-10G12V mutants (see 311 

below). Furthermore, overexpression of wild-type CED-10, but not of wild-type PSR-1 or CED-312 

12, increases NRE engulfment (Figures 4D, 5A, 5D). Glial CED-10 is, therefore, both necessary 313 

and sufficient to regulate the rate at which AMsh glial engulf AFD NRE fragments. 314 

During apoptotic cell engulfment, CED-10 executes phagocytic arm extension by 315 

mediating actin remodeling (Wang and Yang, 2016). We, therefore, examined animals bearing 316 

a loss-of-function mutation in wsp-1, which encodes an actin polymerization factor, and found 317 

a block in NRE engulfment (Figure 5-figure supplement 1A). As with over-expression of CED-10, 318 

increasing levels of WSP-1 specifically in AMsh glia also leads to increased NRE engulfment 319 

(Figure 5-figure supplement 1A). These results suggest that CED-10-dependent actin 320 

remodeling is the rate limiting step for the engulfment of AFD-NREs by glia. 321 

 322 

Glial engulfment tracks neuron activity post-development 323 

Previous studies showed that cyclic-nucleotide-gated (CNG) ion channels localize to the AFD 324 

cilium base and are required for AFD neuron firing in response to temperature stimuli  (Cho et 325 

al., 2004; Ramot et al., 2008; Satterlee et al., 2004). These channels are mis-localized in cilia-326 

defective mutants (Nguyen et al., 2014). Independently,  it has been shown that cilia-defective 327 

mutants exhibit deficits in thermotaxis behavior (Tan et al., 2007). Since, we found that cilia-328 

defective mutants have increased engulfment (Figure 3), these taken together prompted us to 329 

examine the role for neuron activity in glial engulfment directly. 330 

We examined animals defective in TAX-2, the sole CNG β-subunit in the C. elegans 331 

genome, or in TAX-4 and CNG-3, α-subunits that function together in AFD (Cho et al., 2004; 332 



Raiders et al. 

 16 

Hellman and Shen, 2011; Satterlee et al., 2004) for engulfment defects. Glia in mutant animals 333 

accumulate extra puncta (tax-2: 28.1 ± 2 puncta, n=37; tax-4; cng-3 double mutants: 23.8 ± 2.3 334 

puncta, n=17) (Figure 6A-C), and in tax-2 mutants, a larger fraction of the animal population 335 

has >10 puncta (tax-2, 99%, n=92 animals; wild type, 65%, n= 171 animals) (Figure 6C). 336 

Conversely, we assessed the consequence of increasing the levels of cGMP, which promotes 337 

CNG channel opening, by mutating the cGMP degrading enzymes PDE-1 and PDE-5 expressed 338 

in AFD neurons (Ramot et al., 2008; Singhvi et al., 2016). We found that pde-1; pde-5 double 339 

mutant animals have reduced glia puncta numbers compared to wild type (7.1 ± 1.4, n=11 vs. 340 

14 ± 1, n=78) (Figure 6B-C). Finally, acute and cell-specific chemo-genetic silencing of AFD 341 

using a histamine-gated chloride channel (Pokala et al., 2014) expressed under an AFD-specific 342 

promoter, leads to puncta enrichment in AMsh glia within 24 hours (Figure 6E-F). Thus, AFD 343 

activity levels reciprocally affect AFD NRE engulfment levels, and can do so acutely. 344 

 Accumulation of glial puncta in AFD activity mutants could result from increased  345 

engulfment rates or, alternatively, from decreased puncta degradation. We favor the former 346 

model, as we found that the increase in puncta number seen in tax-2 mutant glia is entirely 347 

suppressed by loss of CED-10 (Figure 6B-C). Likewise, we also observed significant suppression 348 

in tax-2; psr-1(tm469) double mutants compared to tax-2 alone; and this suppression is 349 

enhanced further by pat-2 (RNAi) (Figure 6C-D). Loss of ced-10 also suppresses excess 350 

engulfment following acute chemo-genetic silencing of AFD (Figure 6F). Our findings are 351 

therefore consistent with neuron activity controlling NRE engulfment through the CED-10 352 

pathway. 353 

 354 
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Glial engulfment regulates AFD neuron receptive-ending shape and thermotaxis behavior 355 

What might be the function of AFD NRE engulfment by glia? To test this, we examined AFD  356 

NRE shape by 3D super-resolution imaging of transgenic mutants bearing a tagged reporter 357 

that specifically marks AFD-NRE microvilli. We found that ced-10 loss of function, or AMsh glia-358 

specific over-expression of dominant negative CED-10T17N, results in elongated AFD NRE 359 

microvilli (Figure 7A-B, -figure supplement 1B). By contrast, over-expressing wild-type CED-10, 360 

which has excess puncta, produces shorter AFD NRE microvilli, and this defect worsens with 361 

age (Figure 7A, 7B). Furthermore, overexpressing GTP-locked CED10G12V also leads to shorter 362 

AFD NRE microvilli even though it paradoxically has reduced number of puncta in glia (Figure 363 

7-figure supplement 1A-B), These observations are consistent with the idea that engulfment in 364 

this strain may be so efficient that no NREs remain to be engulfed. Thus, AMsh glial 365 

engulfment of NRE fragments is important for regulating the AFD NRE microvilli length. 366 

 When placed on a temperature gradient, C. elegans seek their temperature of  367 

cultivation, Tc (Hedgecock and Russell, 1975) (Figure 7C-F, wildtype data in black line).This 368 

animal behavior depends on thermosensory transduction at the AFD NRE (Goodman and 369 

Sengupta, 2018; Mori and Ohshima, 1995). Previous studies have shown that animals with 370 

defects in AFD NRE shape also exhibit defects in this thermosensory behavior. Consistent with 371 

this, we found that ced-10 mutants exhibit altered thermosensory behavior. While wild type 372 

animals reared at 25oC migrate to their Tc = 25oC on a linear temperature gradient, ced-10 373 

mutants prefer cooler temperatures (Figure 7C, 7D). Furthermore, animals carrying integrated 374 

transgenes overexpressing CED-10 only in AMsh glia also exhibit athermotactic defects 375 

regardless of the cultivation temperatures (Figure 7E, 7F). We conclude, therefore, that AFD  376 
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NRE engulfment is required for appropriate animal thermotaxis behaviors. 377 

The behavior defects we observed are consistent with the thesis that reduced neuron 378 

activity drives glial engulfment. The athermotactic behavior of CED-10 over-expression strains 379 

mimics similar defects of tax-2 or tax-2; tax-4 double mutant animals, and both manipulations 380 

lead to increased puncta and reduced neuron activity (Figure 7-figure supplement 1C-D) (Cho 381 

et al., 2004; Satterlee et al., 2004). Likewise, the cryophilic behavior of ced-10 mutants, which 382 

have reduced glia puncta, is similar to that observed in other mutants with increased AFD 383 

cGMP levels (Singhvi et al., 2016). We favor the model that activity-dependent glial 384 

engulfment of NRE is one mechanism by which AMsh glia and AFD coordinate regulation of 385 

NRE shape and animal thermosensory behavior.  386 

 387 

DISCUSSION 388 

We report our discovery that C. elegans glia, like glia of other species, engulf associated 389 

 neuron endings, highlighting evolutionary conservation of this critical glial function (Figure 8). 390 

Exploiting unique features of our experimental model, we demonstrate that glial CED-10 levels 391 

dictate engulfment rates, revealing that glia drive neuronal remodeling, and do not just 392 

passively clear shed neuronal debris. Indeed, we demonstrate that engulfment is required for 393 

post-developmental maintenance of sensory NRE shape, and behavior. This also extends a role 394 

for glial engulfment in the active sensory perception of temperature. Importantly, our studies 395 

allow us to directly demonstrate at single-cell resolution that pruning of individual neurons by 396 

a single glia modifies animal behavior. This, in conjunction with our finding that phagocytosis is 397 

impacted by neuronal activity states, demonstrates important physiological relevance.  398 
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 399 

Controlled tuning of the phagocytosis machinery 400 

Our studies reveal a fundamental distinction between glia-dependent phagocytosis and other 401 

modes of engulfment. Apoptotic cell phagocytosis, glial clearance of injury-induced neuronal 402 

debris, and related engulfment events are all-or-none phenomena:  engulfment either occurs 403 

or does not. By contrast, we show here that in AMsh glia, engulfment rate is dynamically 404 

tuned throughout animal life to modulate NRE morphology, impacting animal behavior. The 405 

molecular parallels between the engulfment machinery in the peripheral sense-organ AMsh 406 

glia, and other CNS glial engulfment leads us to posit that controlled phagocytosis may 407 

similarly regulate glial engulfment in other settings. 408 

 409 

Distinct receptors mediate PS-dependent glial pruning 410 

Accompanying this more versatile engulfment program is a shift in the relevance of specific  411 

engulfment receptors. Apoptotic phagocytosis in C. elegans relies predominantly on CED-1, 412 

with the PS-receptor PSR-1 playing a minor role (Wang et al., 2003; Wang and Yang, 2016). 413 

Surprisingly, while CED-1 is dispensable for pruning by AMsh glia, we identified PSR-1/PS-414 

receptor as a novel regulator of glial pruning. Why do CED-1 and PSR-1 have differing valence 415 

in apoptotic phagocytosis and glial pruning? One possibility is that this difference in receptors 416 

reflects the size of particles engulfed. Supporting this notion, engulfment of small cell -process 417 

debris of the C. elegans tail-spike cell is also independent of CED-1 (Ghose et al., 2018). 418 

We identified PSR-1 and Integrins as a PS-receptor driving AMsh glial engulfment of AFD NRE. 419 

Other PS-receptors that have been shown to regulate glial engulfment across species include 420 



Raiders et al. 

 20 

CED-1/MEGF10/Draper, MerTK and GPR56, and it is likely that yet others await identification 421 

(Chung et al., 2013; Freeman, 2015; Hilu-Dadia and Kurant, 2020; Kevany and Palczewski, 422 

2010; Li et al., 2020; Nomura-Komoike et al., 2020; Raiders et al., 2021; Tasdemir-Yilmaz and 423 

Freeman, 2014; Vecino et al., 2016). This then raises the question of why one analogous glial 424 

function of pruning would require different receptors. We speculate that this may reflect the 425 

molecular heterogeneity across glia and/or the context of engulfment (Raiders et al., 2021).  426 

 427 

Mediators of PS-exposure in C. elegans glial pruning 428 

PS exposure has emerged as a classic engulfment signal for both apoptotic phagocytosis and 429 

glial pruning, but how this is regulated remains enigmatic. We identify this as a conserved 430 

feature in C. elegans glial engulfment and implicate the phospholipid transporter TAT-1/ATP8A 431 

in this process. TAT-1 is a member of the Type 4 family P4 ATPases, which flip PS from 432 

exoplasmic to cytoplasmic membrane leaflets (Andersen et al., 2016). We note that murine 433 

P4-ATPases ATP8A1 and ATP8A2 are expressed in the nervous system, and knockout mice 434 

exhibit deficient hippocampal learning, sensory deficits, cerebellar ataxia, mental retardation, 435 

and spinal cord degeneration, and shortened photoreceptor NRE length (Coleman et al., 2014). 436 

Given this intriguing parallel, it will be interesting to probe whether ATP8A similarly modulates 437 

glial pruning in mammals.   438 

We also identify the PS bridging molecule TTR-52 as a regulator of pruning. It is also 439 

implicated in apoptotic phagocytosis and nerve regeneration (Neumann et al., 2015; Wang et 440 

al., 2010). Retinal RPE glia and cortical astrocytes also require PS-bridging opsonins (Gas6 and 441 

MFGE8) to engulf neuron fragments (Bellesi et al., 2017; Kevany and Palczewski, 2010).  442 
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Whether all glia require PS-opsonization for pruning remains to be determined.  443 

 444 

Glia direct pruning with sub-cellular precision  445 

Our finding that proper animal behavior requires precise levels of NRE engulfment by glia 446 

suggests that engulfment must proceed with extraordinary specificity, so that behavior is 447 

optimal. Indeed, we find that AMsh glia prune AFD NRE with sub-cellular precision. While 448 

AFD’s actin-rich microvilli are removed by glia, its adjacent microtubule-based cilium is not. 449 

Aberrantly excessive/reduced pruning correlate with disease in mammals, hinting that similar 450 

sub-cellular precision in marking fragments/endings for engulfment might be involved(Chung 451 

et al., 2015; Wilton et al., 2019). How this precision is regulated will be fascinating to explore. 452 

 453 

Peripheral sense-organ glia pruning modulates NRE shape and animal sensory behaviors 454 

A role for pruning in normal neural functions has so far been investigated for central nervous  455 

system glia (astrocytes, microglia, retinal glia). Peripheral glia of the inner ear are known to 456 

activate phagocytosis only in injury settings (Bird et al., 2010). Our studies demonstrate that 457 

pruning of sensory neuron endings by glia is required for accurate sensory perception. Thus, 458 

glial pruning is conserved in both the CNS and PNS and is executed for normal neural functions 459 

by analogous molecular mechanisms. While these studies identify glial pruning as a 460 

mechanism to control NRE shape in response to activity states, we note that it is likely that 461 

AMsh glia and AFD neuron cooperate through multiple mechanisms to regulate AFD NRE 462 

shape and animal thermosensory behaviors, including some that we previously identified 463 

(Singhvi et al., 2016; Wallace et al., 2016). Such regulatory complexity might reflect the fact  464 
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that appropriate thermosensory behaviors are critical for animal survival.  465 

 466 

Active pruning versus passive clearance of debris 467 

An outstanding question in understanding the role of glia is whether glia actively prune NREs 468 

and neuron fragments, or passively clear shed debris. Three lines of evidence in this study lead 469 

us to conclude that AMsh glia actively drive engulfment, rather than passively clearing debris. 470 

One, our finding that glial CED-10 levels can modulate engulfment rates, NRE shape, and 471 

animal behavior suggest that this process can be triggered by glia. Two, while both CED-10 472 

over-expression and ttx-1 mutants have short NRE (Satterlee et al., 2001) (Figure 4- figure 473 

supplement 1B); unlike animals overexpressing CED-10, ttx-1 mutants have fewer puncta, not 474 

more (Figure 2A). Thus, short NRE shape can derive from independent mechanisms. Three, 475 

while both ced-10 and tax-2 mutants have longer, disorganized NRE (Satterlee et al., 2004; 476 

Singhvi et al., 2016), tax-2 mutants have more puncta, not fewer. If glial pruning only passively 477 

cleared debris, we would have expected the opposite. Furthermore, that engulfment tracks 478 

neuron activity and modulating this process impacts animal behavior also suggests a 479 

physiological role for this process.  480 

In summary, our findings reveal glial engulfment as an active regulator of neural 481 

functions. Importantly, they directly and causally link pruning of individual neuron endings to 482 

animal behavior at single-molecule and single-cell resolution. This raises the possibility that 483 

engulfment may be a general mechanism by which glia dynamically modulate sensory 484 

perception and neural functions, across modalities, systems, and species.  485 
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MATERIALS AND METHODS 486 

Worm methods  487 

C. elegans animals were cultured as previously described (Brenner, 1974; Stiernagle, 2006). 488 

Bristol N2 strain was used as wild type. For all experiments, animals were raised at 20oC for at 489 

least two generations without starvation, picked as L4 larvae onto fresh plate and assayed 1 day 490 

later, unless otherwise noted. Germ-line transformations by micro-injection to generate unstable 491 

extra-chromosomal array transgenes were carried out using standard protocols (Fire et al., 1990; 492 

Mello et al., 1991; Stinchcomb et al., 1985). Integration of extra-chromosomal arrays was 493 

performed using UV+ tri-methyl psoralen. All transgenic arrays were generated with 5ng/µl Pelt-494 

2:mCherry, 20ng/µl Pmig-24:Venus, or 20ng/µL Punc-122:RFP as co-injection markers (Abraham et al., 495 

2007; Armenti et al., 2014; Miyabayashi et al., 1999). Further information on all genetic strains 496 

and reagents is available upon request.  497 

 498 

Plasmids 499 

CED-10 PLASMIDS: ced-10B isoform cDNA was isolated from a mixed stage cDNA library by PCR 500 

amplification with primers containing Xma1 and Nhe 1 restriction enzyme sites and directionally 501 

ligated into pAS465 (PF53F4.13:SL2:mCherry)to generate pAS275 plasmid. CED-10G12V and CED-502 

10T17N mutations were derived by site directed mutagenesis of pAS275 plasmid to produce 503 

pASJ29 (pSAR8) and pASJ37 (pSAR11) respectively.    504 

 505 

CED-12 PLASMIDS: ced-12B isoform cDNA was isolated from a mixed stage cDNA library by PCR  506 



Raiders et al. 

 24 

amplification with primers containing a XmaI and NheI restriction enzyme sites and directionally  507 

ligated into pAS465 to generate the pASJ11 (pSAR1) plasmid.   508 

 509 

PSR-1 PLASMID: psr-1 C isoform cDNA was isolated from a mixed stage cDNA library by PCR 510 

amplification with primers containing BamHI and NheI restriction enzyme sites, and directionally 511 

ligated into pAS465 to generate the pASJ23 (pSAR7) plasmid.  512 

 513 

TAT-1 PLASMID: tat-1 A isoform cDNA was generously gifted by the lab of Ding Xue. The PSRTX-1b 514 

promoter fragment was digested from the pSAR19 plasmid with SphI and XmaI. A 430bp 515 

fragment of the genomic tat-1 sequence containing the first two exons and first intron was 516 

amplified by PCR with added 5’ XmaI site. This fragment was digested with XmaI and SphI. The 517 

p49_78 plasmid containing tat-1 cDNA was digested with SphI and all three fragments were 518 

ligated to make pASJ114 (pSAR35). Correct orientation was confirmed by sequencing of the 519 

ligation product.   520 

 521 

GFP:PSR-1 PLASMID: psr-1 C isoform cDNA was isolated from a mixed stage cDNA library by PCR 522 

amplification with primers containing BamHI and PstI restriction enzyme sites and ligated into 523 

pAS516 (PF53F4.13:GFP) to produce pASJ56 (pSAR18).    524 

 525 

His-Cl1 PLASMID: Histamine gated chloride channel sequence from pNP424(Pokala et al., 2014)  526 

was restriction digested with NheI and KpnI enzymes and ligated to pAS178 (PSRTX-1:SL2:GFP) to  527 
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produce pAS540. 528 

RECOMBINEERED FOSMIDS: The following fosmids with GFP recombineered in-frame in the 529 

coding sequence were obtained from the MPI-TransgeneOme Project: gcy-8 (Clone ID: 530 

02097061181003035 C08), gcy-18 (Clone ID: 9735267524753001 E03), gcy-23 (Clone ID: 531 

6523378417130642 E08).  532 

 533 

Microscopy, Image Processing and Analyses  534 

Animals were immobilized using either 2mM Tetramizole or 100nm polysterene beads (Bangs 535 

Laboratories, Catalog # PS02004). Images were collected on a Deltavision Elite RoHS wide-field 536 

deconvolution system with Ultimate Focus(GE),  a PlanApo 60x/1.42 NA or OLY 100x/1.40 NA oil-537 

immersion objective and a DV Elite CMOS Camera. Super-resolution microscopy images were 538 

collected on the Leica VT-iSIM microscope or the Leica SP8 confocal with Lightning. Images were  539 

processed on ImageJ, Adobe Photoshop CC or Adobe Illustrator CC.  540 

Binning categories for population analyses were based on preliminary analyses of 541 

population distribution of puncta numbers/animal in wild-type, and mutants with excess puncta  542 

(tax-2) or reduced puncta mutants (ced-10, psr-1). Preliminary analyses of these strains suggested 543 

that the bin intervals (0, 1-9 or 10+ puncta) are the most robust, conservative, and rapid 544 

assessment of phenotypes. Higher than 10 puncta/cell were not readily resolved without post-545 

processing and therefore binned together in population scores. Some genotypes were selected 546 

for further post-hoc single cell puncta quantification analyses.  For this, glia puncta numbers of 547 
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were quantified using Analyze Particles function in ImageJ on deconvolved images. Individual 548 

puncta size measurements were done on yz orthogonal rendering of optical sections using3D 549 

objects counter plug-in in ImageJ.  550 

 551 

Electron Microscopy 552 

Adult hermaphrodites were fixed in 0.8% glutaraldehyde -0.8% osmium tetroxide-0.1 M 553 

cacodylate buffer (pH 7.4) for 1 hr at 4°C in the dark and then quickly rinsed several times with 554 

0.1M cacodylate buffer. Animal heads were decapitated and fixed in 1% osmium tetroxide-0.1 M 555 

cacodylate buffer overnight at 4°C, quickly rinsed several times in 0.1M Cacaodylate buffer and 556 

dehydrated through a graded ethanol series. The samples were then embedded in Eponate 12 557 

resin (Ted Pella, Inc, Redding CA) and polymerized overnight in a 60oC oven. 70nm ultrathin serial 558 

sections were collected onto pioloform coated slot grids from the anterior tip of the animal to a 559 

distance of approximately 7um. Sections were examined on a JEOL 1400 TEM (JEOL, Tokyo, 560 

Japan) at an accelerating voltage of 120kV. Images were acquired with a Gatan Rio 4kx4k 561 

detector (Gatan, Inc, Pleasanton, CA). Microvilli size measurements were done with ImageJ 562 

Measure Function on electron micrograph thin sections. 563 

 564 

Statistical Analyses 565 
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Population puncta scoring was statistically analyzed using Fisher’s Exact statistical test in 566 

GraphPad Prism 8. Puncta images were quantified using Analyze Particles function in Image J and 567 

analyzed with a One-Way ANOVA with multiple comparison test in GraphPad Prism 8. 568 

 569 

Chemo-genetic silencing and RNAi 570 

For chemo-genetic silencing assays, 10mM Histamine (Sigma, Catalog # H7250) was added to  571 

NGM agar plates. L4 larval stage transgenic worms expressing HisCl1 in AFD were grown for 24  572 

hours on either normal or Histamine plates and assayed as Day 1 adults (Pokala et al., 2014).  573 

Plasmids expressing double-stranded RNA (dsRNA) were obtained from the Ahringer  574 

Library (Fraser et al., 2000; Kamath, 2003). The L4440 empty vector was used as negative  575 

control. RNAi was performed by feeding synchronized L1 animals RNAi bacteria(Timmons, 2004). 576 

L4 larva were moved to a fresh plate with RNAi bacteria and scored 24 hours later for glial puncta 577 

(nsIs483) or AFD-NRE defects (nsIs645).  578 

 579 

Animal Behavior Assays 580 

Thermotaxis assays were performed on a 17°-26°C linear temperature gradient, designed as 581 

previously described (Hedgecock and Russell, 1975; Mori and Ohshima, 1995). Animals were 582 

synchronized and the staged progeny were tested on the first day of adulthood. Briefly, animals 583 
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were washed twice with S-Basal and spotted onto the center of a 10-cm plate warmed to room 584 

temperature and containing 12 mL of NGM agar. The plate was placed onto the temperature 585 

gradient (17-26oC) with the addition of 5 mL glycerol to its bottom to improve thermal 586 

conductivity. At the end of 45 minutes, the plate was inverted over chloroform to kill the animals 587 

and allowing easy counting of animals in each bin. The plates have an imprinted 6x6 square 588 

pattern which formed the basis of the 6 temperature bins. Each data point is the average of 3-8 589 

assays with ~150 worms/assay. 590 

 591 

 592 

 593 

 594 

Supplementary Materials: 595 

Video 1  596 

Video 2  597 
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FIGURE LEGENDS 844 

Figure 1. AMsh glia contain AFD NRE labeled puncta (A) Schematic of the C. elegans head region 845 

depicting AFD neuron and AMsh glial cell body and processes. Anterior is to the top. Black box: 846 

zoomed in Figure 1B, 1C; red box region zoomed in Figure 1E; blue box zoomed in Figure 1F.  (B) 847 

The AMsh glia’s anterior ending ensheathes AFD-NRE dendrite, which comprises ~45 microvilli 848 

(green) and a single cilium (blue). AJ= adherens junction between AMsh glia and AFD neuron (C, 849 

C’) PSRTX-1b:SRTX-1:GFP specifically labels AFD-NRE microvilli. Arrows indicate microvilli fragments 850 

disconnected from the main AFD-NRE structure, zoomed in C’. Anterior to top. Scale bar: 5μm.  851 

(D-F’) AMsh glia (magenta) show AFD-NRE puncta throughout the cell (D) including the process 852 

(E) and soma (F). Image in (D) is a composite of three exposure settings of a single animal, 853 

stitched where indicated by dotted white line. Orthogonal slices of AMsh glial process (E’, E’’, 854 

Scale bar: 2μm) and cell body (F’) show AFD-NRE fragments completely within AMsh glia. Scale 855 

bar: 5μm. (G, G’) Day 1 adult animal with left AFD neuron ablated by laser-microsurgery during L1 856 

larval stage. Left AMsh soma (blue outline) lacks AFD-NRE fragments, right AMsh soma (green 857 

outline) contains fragments. D, fluorescence micrograph; D’, DIC image   858 

(H, I) Quantification of puncta in ipsi- and contra-lateral AMsh glial cell soma with AFD neurons 859 

ablated by laser (H) or genetically (I). N= number of animals assayed.   860 
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Figure 2. AMsh glia puncta engulf AFD NRE. (A) Quantification of average puncta diameter within 861 

AMsh glial cell soma (B) Quantification average AFD-NRE microvilli diameter from electron 862 

micrographs. (C) Population scores of wild type animals with AFD-NRE labeled fragments within 863 

AMsh soma at different developmental stages. X-axis: percent animals with fragments. Y-axis: 864 

developmental stage. Puncta numbers are quantified into three bins (≥10 fragments, black bar), 865 

(1-9 fragments, grey bar), (0 fragments, white bar). N= number of animals. Statistics: Fisher’s 866 

Exact test. P<0.05 = *, P<0.005 = **,  P<0.0005 = ***, P<0.00005 = **** ns = p>0.05. See 867 

Methods for details. (D) Quantification of AFD-NRE labeled fragments within AMsh soma at 868 

different developmental stages.  X-axis: Developmental stage, Y-axis: number of puncta per AMsh 869 

glial cell-soma. Median puncta counts and N (number of animals): L1 Larva (0.5 ± 0.2 puncta, 870 

n=15 animals), L3 Larva (1.6 ± 0.5 puncta, n=10 animals), L4 Larva (8.6 ± 1.2 puncta, n=19 871 

animals), Day 1 Adult (14.1 ± 1 puncta, n=78 animals), Day 3 Adult (29.2 ± 3 puncta, n=17 animals) 872 

Statistics: One-way ANOVA w/ multiple comparison. P<0.05 = *, P<0.005 = **,  P<0.0005 = ***, 873 

P<0.00005 = **** ns = p>0.05. (E) Average number of fragments in animals cultivated at 15oC, 874 

20oC or 25oC. Refer Figure 2A for data presentation details. Median puncta counts and N (number 875 

of animals): 15oC (6 ± 2 puncta, n=8 animals), 20oC (14.1 ± 1 puncta, n=78 animals), 25oC (27.6 ± 3 876 

puncta, n=16 animals).   877 
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Figure 2 – figure Supplement 1. AMsh glia engulf AFD-NRE fragments. 878 

 (A) Electron micrograph through AFD-NRE microvilli of an animal. An individual microvillum taken for 879 

diameter measurement in Fig 2B is noted by yellow lines. Scale bar: 500nm. (B) Time-stamped stills from 880 

Video 1 of AFD-NRE dissociation of fragments. Each colored arrowhead tracks an individual fragment 881 

moving away from AFD-NRE. Scale bar: 5μm.   882 
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Figure 3. AMsh glia engulf AFD NRE microvilli but not cilia 883 

(A) AFD-NRE labeled fragments observed in different transgenic animal strains. Each strain has a 884 

different tagged fusion protein, driven by a different AFD-specific promoter, localizing to either 885 

microvilli (green) or cilium (blue). X=axis: genotype; Y-axis: percent animals with AFD-NRE labeled 886 

puncta inside AMsh soma. N= number of animals analyzed.  AFD microvilli labelled (green) or AFD 887 

cilium labelled (blue). (B) Schematic depicting the two compartments of the AFD NRE. An array of 888 

~45 actin-based microvilli (green) and a single microtubule-based cilium (blue). Fluorescence and 889 

DIC micrographs showing expression of ciliary DYF-11:GFP under an AFD neuron-specific 890 

promoter in AFD cilia. C = cilia(arrowhead), D = AFD dendrite (arrow). (C) Panel showing AFD NRE 891 

tagged puncta (blue arrows) within AMsh glial cell soma (magenta outline) in different genetic 892 

backgrounds as noted. AFD cell-body (red Asterix). Scale bar: 5μm. (D) Population counts of 893 

animals with AMsh glial puncta. Refer Figure 2C for data presentation details. Alleles used: ttx-894 

1(p767), dyf-11(mn392), osm-6(p811). (+) = p<0.05 compared to wild type, (-) = p≥0.05 compared 895 

to wild type. (E) Median puncta counts and N (number of animals): wild type (14 ± 1 puncta, n=78 896 

animals), ttx-1(p767) (0.1 ± 0.1 puncta, n=7 animals), dyf-11(mn392) (38.6 ± 3.6 puncta, n=27 897 

animals). Refer Figure 2D for data presentation details.  898 
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Figure 4. Engulfment of AFD-NRE by AMsh glia requires the phosphatidylserine receptor PSR-1 899 

and integrin PAT-2. (A) Schematic of the genetic pathway underlying apoptotic corpse 900 

engulfment in C. elegans. (B-D) Population counts of animals with AMsh glia puncta. Refer Figure 901 

2C for data presentation details. (+) = p<0.05 compared to wild type, (-) = p≥0.05 compared to 902 

wild type (B) Alleles used in this graph: tat-1(tm3110), tat-1(tm1034), scrm-1(tm805), ced-903 

8(n1819). (C) Alleles used in this graph: ced-1(e1754), ced-1(e1735), ced-7(n2094), ced-6(n1813). 904 

(D) Alleles used in this graph: psr-1(tm469), tat-1(tm1034), ttr-52(tm2078). (E) Quantification of 905 

puncta within AMsh cell soma in mutants listed. Refer Figure 2D for data presentation details. 906 

Median puncta counts and N (number of animals): wild type (14 ± 1 puncta, n=78 animals), psr-907 

1(tm469) (7.4 ± 0.8 puncta, n=28 animals), tat-1 (41.6 ± 4.6 puncta, n=19 animals). (F) 908 

Fluorescence micrograph of a transgenic animal with GFP tagged PSR-1 expressed specifically in 909 

AMsh glia (magenta) localizing on the apical membrane around AFD-NRE (green). GFP:PSR 910 

localizes to apical membrane in AMsh glia (yellow arrow) around AFD-NRE (asterisk). Scale bar: 911 

5μm. (F’) Zoom of box in two-color merged image. (G) RNAi (control pat-2) in wild-type or psr-912 

1(tm469) mutant animals. Refer Figure 2C for data presentation details. EV, empty vector control.   913 
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Figure 4 – figure supplement 1. Engulfment of AFD-NRE by AMsh glia does not depend on some 914 

RTK or CED-1/MEGF10/Draper. 915 

(A) Percent animals with AFD NRE labeled puncta in AMsh glia. X axis = genotype, Y axis = percent animals. 916 

N = number of animals examined. Alleles as noted. (B, C) Population counts of animals with AMsh glial 917 

puncta in animals as noted in the genotype. Refer Figure 2C for data presentation details. Alleles used in 918 

either graph: psr-1(tm469), ced-1(e1754), ttr-52(tm2078). EV, empty vector control. (+) = p<0.05 919 

compared to wild type, (-) = p≥0.05 compared to wild type.   920 
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Figure 5. Phagocytosis pathway components, glial CED-10 levels and actin remodeling actively 921 

control rate of engulfment. (A) Population counts of animals with AMsh glial puncta in genetic 922 

backgrounds indicated. Refer Figure 2C for data presentation details. (+) = p<0.05 compared to 923 

wild type, (-) = p≥0.05 compared to wild type. Alleles used in this graph: ced-12(n3261), ced-924 

12(k149), ced-2(e1752), ced-5(n1812). (B) Quantification of puncta within AMsh cell soma in 925 

phagocytosis pathway mutants. Refer Figure 2D for data presentation details. Median puncta 926 

counts and N (number of animals): wild type (14 ± 1 puncta, n=78 animals), ced-10(n1993) (2.4 ± 927 

0.6 puncta, n=24 animals), ced-10(n3246) (3.08 ± 0.79, n=39),PAMsh:CED-10 (104.7 ± 7.8 puncta, 928 

n=14 animals). (C) Panel showing AFD-NRE tagged puncta (blue arrows) within AMsh glial cell 929 

soma (magenta outline) in different genetic backgrounds as noted. AFD cell-body (red Asterix). 930 

Scale bar: 5μm.  (D, E) Population counts of animals with AMsh glial puncta in genetic 931 

backgrounds indicated. Refer Figure 2C for data presentation details. (+) = p<0.05 compared to 932 

wild type, (-) = p≥0.05 compared to wild type. (D) Alleles used in this graph: ced-10(n3246), ced-933 

10(n1993). CED-10G12V and CED-10T17N is a constitutively active or dominant negative form of CED-934 

10, respectively (E) Alleles used in this graph: psr-1(tm469), ced-10(n3246), ced-12 (k149).  935 
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Figure 5 – figure supplement 1. The actin regulator WSP-1 can regulate engulfment cell-936 

autonomously in AMsh glia  937 

(A) Population counts of animals with AMsh glial puncta in animals as noted in the genotype. Allele used: 938 

wsp-1(gm324). Refer Figure 2C for data presentation details. (+) = p<0.05 compared to wild type, (-) = 939 

p≥0.05 compared to wild type.  940 
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Figure 6. Glial phagocytic pathway tracks neuron activity to regulate AFD NRE engulfment rate.  941 

(A) Panel showing AFD-NRE tagged puncta (blue arrows) within AMsh glial cell soma (magenta 942 

outline) in different genetic backgrounds as noted. AFD cell-body (red Asterix). Scale bar: 5μm. 943 

(B) Quantification of puncta within AMsh cell soma in phagocytosis pathway mutants. Refer 944 

Figure 2D for data presentation details. Median puncta counts and N (number of animals): wild 945 

type (14 ± 1 puncta, n=78 animals), pde-1(nj57) pde-5(nj49) double mutant animals (7.1 ± 1.4, 946 

n=11 animals), tax-4(p678);cng-3(jh113) double mutants (23.8 ± 2.4 puncta, n=17 animals), tax-947 

2(p691) (28.1 ± 2 puncta, n=37 animals), ced-10(n3246); tax-2(p691) double mutants  (1.8 ± 0.5 948 

puncta, n=25 animals). (C, D) Population counts of animals with AMsh glial puncta in genetic 949 

backgrounds indicated. Refer Figure 2C for data presentation details. (+) = p<0.05 compared to 950 

wild type, (-) = p≥0.05 compared to wild type. (C) Alleles used in this graph: pde-1(nj57), pde-951 

5(nj49), tax-4(p678), cng-3(jh113), tax-2(p691), ced-10(n3246), psr-1(tm469) (D) Alleles used in 952 

this graph: tax-2(p691), psr-1(tm469). EV, empty vector control. (E) Percent wild type or ced-953 

10(n3246) mutant animals with observable GFP+ puncta with or without histamine. N= number 954 

of animals.  (F) Quantification of percent animals with puncta in AMsh glia (Y axis) in transgenic 955 

strains carrying a histamine-gated chloride channel, with/out Histamine activation as noted (X 956 

axis).   957 
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Figure 7. AMsh glial engulfment of AFD-NRE modulates AFD NRE shape and animal 958 

thermosensory behavior (A-C) AFD-NRE microvilli labelled with GFP in Day 3 adult animals of 959 

genotypes as indicated. Three representative images are shown for each genotype. (B) 960 

Quantification of percent animals with defective AFD-NRE microvilli shape. N= number of animals 961 

scored. (C-F) Thermotaxis behavior assays for animals of indicated genotype raised at 15oC (C, E) 962 

or 25oC (D, F). Animals assayed 24-hour post-mid-L4 larval stage. N, number of animals.   963 
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Figure 7- figure supplement 1. AMsh glial CED-10 tracks neuron activity to regulate AFD NRE 964 

engulfment. (A) Day 1 AFD NRE defects in animals expressing constitutive active CED-10G12V in 965 

AMsh glia. (B) Proportion of worms with defective AFD-NRE shape on Day 1 and 3 of adulthood in 966 

animals expressing constitutive active CED-10G12V or dominant negative CED-10T17N. ttx-1 (p767) 967 

mutant analysis included for reference. (C-D) Thermotaxis behavior assays for animals of 968 

indicated genotype raised at 15oC (C) or 25oC (D). Animals assayed 24-hour post-mid-L4 larval 969 

stage. N, number of animals. Genotype as noted. Alleles used for assays: tax-2(p691), tax-970 

4(p678).  971 
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Figure 8. Model of AMsh glial engulfment of AFD NRE. Model depicting molecular machinery 972 

driving engulfment of AFD neuron microvilli by AMsh glia. TAT-1 maintains phosphatidylserine on 973 

the inner plasma leaflet. Neuron activity negatively regulates engulfment. The phosphatidylserine 974 

receptor PSR-1 signals via ternary GEF complex CED-2/5/12 to activate Rac1 GTPase CED-10, 975 

along with PAT-2/Integrin. CED-10 and its downstream effector, WSP-1, drive engulfment of AFD 976 

neuron microvilli fragments.  977 
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Video 1. 978 

Dissociation of AFD-NRE fragments. 979 

Movie of an animal’s AFD-NRE, labeled with GFP and imaged in vivo at 7 frames/second, shows fragments 980 

blebbing at regular intervals.   981 
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Video 2. 982 

AFD-NRE fragments are engulfed by AMsh glia. 983 

Movie of an animal’s AFD-NRE (labeled with GFP) and AMsh glia (labeled with magenta) imaged in vivo at 984 

7 frames/second, shows fragments blebbing at regular intervals.   985 
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SOURCE DATA FILES 986 

Figure 1 – source data 1. Raw data for Figure 1 panels 1H, II  987 

 988 

Figure 2 – source data 1. AMsh glia puncta engulf AFD NRE. Raw data for Figure2 panels: 2A, 2B, 989 

2C, 2D, 2E 990 

 991 

Figure 3 – source data 1. AMsh glia engulf AFD NRE microvilli but not cilia. Raw data for Figure 3 992 

panels: 3A, 3D, 3E 993 

 994 

Figure 4. Engulfment of AFD-NRE by AMsh glia requires the phosphatidylserine receptor PSR-1 995 

and integrin PAT-2. Raw data for Figure 4 panels: 4B, 4C, 4D, 4E, 4G, and figure supplement 996 

panels 1A, 1B, 1C  997 

 998 

Figure 5. Phagocytosis pathway components, glial CED-10 levels and actin remodeling actively 999 

control rate of engulfment. Raw data for Figure 5 panels: 5A, 5B, 5D, 5E, and figure supplement 1000 

panel 1A 1001 

 1002 

Figure 6. Glial phagocytic pathway tracks neuron activity to regulate AFD NRE engulfment rate.  1003 

Raw data for Figure 6 panels 6B, 6C, 6D, 6F. 1004 

 1005 

Figure 7. AMsh glial engulfment of AFD-NRE modulates AFD NRE shape and animal  1006 
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thermosensory behavior. Raw data for Figure 7 panels 7B, 7C, 7D, 7E, 7F and figure supplement 1007 

panels 1B, 1C, 1D  1008 
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APPENDIX – KEY RESOURCES TABLE 1031 

Key Resources Table 

Reagent type (species) or 

resource 
Designation 

Source or 

reference 
Identifiers Additional Information 

strain, strain background 

(C. elegans) 
nsIs481 This paper 

Singhvi Lab Database ID: 

OS8556 

[20 ng/µl 

02097061181003035 C08 

(Pgcy-8:gcy-8:GFP) + Pelt-

2:mCherry]. Integration of 

nsEx3945. Request from  

corresponding author.  

strain, strain background 

(C. elegans) 
nsIs482 This paper 

Singhvi Lab Database ID: 

OS8557 

[20 ng/µl 

02097061181003035 C08 

(Pgcy-8:gcy-8:GFP) + Pelt-

2:mCherry]. Integration of 

nsEx3945. Request from  

corresponding author.  

strain, strain background 

(C. elegans) 
nsIs483 X This paper 

Singhvi Lab Database ID: 

OS8558 

[20 ng/µl 

02097061181003035 C08 

(Pgcy-8:gcy-8:GFP) + Pelt-

2:mCherry]. Integration of 

nsEx3945. Request from  

corresponding author.  

strain, strain background 

(C. elegans) 
nsIs484 This paper 

Singhvi Lab Database ID:  

OS8502 

[20 ng/µl 

02097061181003035 C08 

(Pgcy-8:gcy-8:GFP) + Pelt-

2:mCherry]. Integration of 

nsEx3945. Request from  

corresponding author.  

strain, strain background 

(C. elegans) 
nsIs645 IV This paper 

Singhvi Lab Database ID: 

OS10884 

[50 ng/µl pAS322 (Psrtx-

1B:STRX-1:GFP) + Punc-

122:RFP].  Integration of 

nsEx4078. Request from 

corresponding author.  

strain, strain background 

(C. elegans) 
nsIs647 This paper 

Singhvi Lab Database ID: 

OS10805 

[50 ng/µl pAS322 (Psrtx-

1B:STRX-1:GFP) + Punc-

122:RFP].  Integration of 

nsEx4078. Request from 

corresponding author.  
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strain, strain background 

(C. elegans) 
dnaIs1 This paper 

Singhvi Lab Database ID: 

ASJ160 

[50ng/µl pAS540 (Psrtx-

1B:HisCl1:SL2:GFP) + elt-

2:mCherry]. Integration of 

nsEx5340. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
dnaIs2 This paper 

Singhvi Lab Database ID: 

ASJ161 

[50ng/µl pAS540 (Psrtx-

1B:HisCl1:SL2:GFP) + elt-

2:mCherry]. Integration of 

nsEx5340. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
dnaIs3 This paper 

Singhvi Lab Database ID: 

ASJ271 

[50ng/µl pAS540 (Psrtx-

1B:HisCl1:SL2:GFP) + elt-

2:mCherry]. Integration of 

nsEx5340. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
dnaIs4 This paper 

Singhvi Lab Database ID: 

ASJ280 

[50ng/µl pAS540 (Psrtx-

1B:HisCl1:SL2:GFP) + elt-

2:mCherry]. Integration of 

nsEx5340. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
dnaIs7 This paper 

Singhvi Lab Database ID: 

ASJ360 

[5 ng/µl pAS275 

(PF53F4.13:CED-

10:SL2:mCherry) + Pmig-

24:Venus]. Integration of 

nsEx5365. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
dnaIs8 This paper 

Singhvi Lab Database ID: 

ASJ359 

[5 ng/µl pAS275 

(PF53F4.13:CED-

10:SL2:mCherry) + Pmig-

24:Venus]. Integration of 

nsEx5365. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsIs143X 

(Procko et 

al., 2011) 
OS9176 PF16F9.3:DsRed 

strain, strain background 

(C. elegans) 
nsIs109 

(Bacaj et 

al., 2008b) 
OS1932 

PF16F9.3:DTA(G53E) 

 

strain, strain background 

(C. elegans) 
nsEx3944 

(Singhvi et 

al., 2016) 

Singhvi Lab Database ID: 

OS7171 

[20 ng/µl 

02097061181003035 C08 

(Pgcy-8:gcy-8:GFP) + Pelt-

2:mCherry]. Request from 
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either corresponding 

author or Dr. Shai 

Shaham (The Rockefeller 

University, USA) 

strain, strain background 

(C. elegans) 
nsEx3945 

(Singhvi et 

al., 2016) 

Singhvi Lab Database ID: 

OS7172 

[20 ng/µl 

02097061181003035 C08 

(Pgcy-8:gcy-8:GFP) + Pelt-

2:mCherry]. Request from 

either corresponding 

author or Dr. Shai 

Shaham (The Rockefeller 

University, USA) 

strain, strain background 

(C. elegans) 
nsEx3946 

(Singhvi et 

al., 2016) 

Singhvi Lab Database ID: 

OS7173 

[20 ng/µl 

02097061181003035 C08 

(Pgcy-8:gcy-8:GFP) + Pelt-

2:mCherry]. Request from 

either corresponding 

author or Dr. Shai 

Shaham (The Rockefeller 

University, USA) 

strain, strain background 

(C. elegans) 
nsEx3947 

(Singhvi et 

al., 2016) 

Singhvi Lab Database ID: 

OS7174 

[20 ng/µl 

02097061181003035 C08 

(Pgcy-8:gcy-8:GFP) + Pelt-

2:mCherry]. Request from 

either corresponding 

author or Dr. Shai 

Shaham (The Rockefeller 

University, USA) 

strain, strain background 

(C. elegans) 
nsEx4733  This paper 

Singhvi Lab Database ID: 

OS9078 

[20ng/µl 

9735267524753001 E03 

(Pgcy-18:gcy-18:GFP ) + Pelt-

2:mCherry].  Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx4734 This paper 

Singhvi Lab Database ID: 

OS9079 

[20ng/µl 

9735267524753001 E03 

(Pgcy-18:gcy-18:GFP ) + Pelt-

2:mCherry].  Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx4857 This paper 

Singhvi Lab Database ID: 

OS9406 

[20ng/µl 

9735267524753001 E03 

(Pgcy-18:gcy-18:GFP ) + Pelt-
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2:mCherry].  Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx4763 This paper 

Singhvi Lab Database ID: 

OS9164 

[20ng/µl 

9735267524753001 E03 

(Pgcy-18:gcy-18:GFP ) + Pelt-

2:mCherry].  Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx4803 This paper 

Singhvi Lab Database ID: 

OS9276 

[20 ng/µl 

6523378417130642 E08 

(Pgcy-23:gcy-23:GFP) + Pelt-

2:mCherry]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx4765 This paper 

Singhvi Lab Database ID: 

OS9166 

[20 ng/µl 

6523378417130642 E08 

(Pgcy-23:gcy-23:GFP) + Pelt-

2:mCherry]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx4392 This paper 

Singhvi Lab Database ID: 

OS8257 

[20ng/µl pAS428 (Psrtx-

1B:DYF-11:GFP) + Pelt-

2:mCherry]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx4393 This paper 

Singhvi Lab Database ID: 

OS8258 

[20ng/µl pAS428 (Psrtx-

1B:DYF-11:GFP) + Pelt-

2:mCherry]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx4394 This paper 

Singhvi Lab Database ID: 

OS8259 

[20ng/µl pAS428 (Psrtx-

1B:DYF-11:GFP) + Pelt-

2:mCherry]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx4446 This paper 

Singhvi Lab Database ID: 

OS8330 

[20ng/µl pAS428 (Psrtx-

1B:DYF-11:GFP) + Pelt-

2:mCherry]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx4051 This paper 

Singhvi Lab Database ID: 

OS7443 

[50ng/µl pAS322 (Psrtx-

1B:SRTX-1:GFP) + Punc-

122:RFP]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx4077 This paper 

Singhvi Lab Database ID: 

OS7541 

[50ng/µl pAS322 (Psrtx-

1B:SRTX-1:GFP) + Punc-

122:RFP]. Request from 

corresponding author. 
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strain, strain background 

(C. elegans) 
nsEx4078 This paper 

Singhvi Lab Database ID: 

OS7542 

[50ng/µl pAS322 (Psrtx-

1B:SRTX-1:GFP) + Punc-

122:RFP]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx4570 This paper 

Singhvi Lab Database ID: 

OS8598 

[25ng/µl pAS447 (Psrtx-

1:EGL-1) + Pmig-24:Venus]. 

Request from 

corresponding author.  

strain, strain background 

(C. elegans) 
nsEx4616 This paper 

Singhvi Lab Database ID: 

OS8767 

[25ng/µl pAS447 (Psrtx-

1:EGL-1) + Pmig-24:Venus]. 

Request from 

corresponding author.  

strain, strain background 

(C. elegans) 
nsEx4688 This paper 

Singhvi Lab Database ID: 

OS8970 

[25ng/µl pAS447 (Psrtx-

1:EGL-1) + Pmig-24:Venus]. 

Request from 

corresponding author.  

strain, strain background 

(C. elegans) 
nsEx5266 This paper 

Singhvi Lab Database ID: 

OS10640 

[50ng/µl pAS540 ([Psrtx-

1:HisCl1:SL2:GFP) + Pelt-

2:mCherry]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx5340 This paper 

Singhvi Lab Database ID: 

OS10735 

[50ng/µl pAS540 ([Psrtx-

1:HisCl1:SL2:GFP) + Pelt-

2:mCherry]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx5356 This paper 

Singhvi Lab Database ID: 

OS10761 

[50ng/µl pAS540 ([Psrtx-

1:HisCl1:SL2:GFP) + Pelt-

2:mCherry]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 

nsEx5365  

 
This paper 

Singhvi Lab Database ID: 

OS10781 

[5ng/µl pAS275 

(PF53F4.13:CED-

10B:SL2:mCherry) + Pmig-

24:Venus]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx5381 This paper 

Singhvi Lab Database ID: 

OS10826 

[5ng/µl pAS275 

(PF53F4.13:CED-

10B:SL2:mCherry) + Pmig-

24:Venus]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
nsEx5382 This paper 

Singhvi Lab Database ID: 

OS10877 

[5ng/µl pAS275 

(PF53F4.13:CED-

10B:SL2:mCherry) + Pmig-
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24:Venus]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
dnaEx1 This paper 

Singhvi Lab Database ID: 

ASJ06 

[5ng/µl pASJ11-pSAR1 

(PF53F4.13:CED-

12B:SL2:mCherry) + Punc-

122:RFP]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
dnaEx2 This paper 

Singhvi Lab Database ID: 

ASJ07 

[5ng/µl pASJ11-pSAR1 

(PF53F4.13:CED-

12B:SL2:mCherry) + Punc-

122:RFP]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
dnaEx3 This paper 

Singhvi Lab Database ID: 

ASJ08 

[5ng/µl pASJ11-pSAR1 

(PF53F4.13:CED-

12B:SL2:mCherry) + Punc-

122:RFP]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
dnaEx19 This paper 

Singhvi Lab Database ID: 

ASJ104 

[5ng/µl pASJ23-pSAR7 

(PF53F4.13:PSR-

1C:SL2:mCherry) + Pmig-

24:Venus]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
dnaEx30 This paper 

Singhvi Lab Database ID: 

SJ143 

[5ng/µl pASJ23-pSAR7 

(PF53F4.13:PSR-

1C:SL2:mCherry) + Pmig-

24:Venus]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
dnaEx33 This paper 

Singhvi Lab Database ID: 

ASJ147 

[5ng/µl pASJ23-pSAR7 

(PF53F4.13:PSR-

1C:SL2:mCherry) + Pmig-

24:Venus]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 
dnaEx29 This paper 

Singhvi Lab Database ID: 

ASJ142 

5ng/µl pASJ29-pSAR8 

(PF53F4.13:CED-

10BG12V:SL2:mCherry) + 

Punc-122:RFP]. Request 

from corresponding 

author. 

strain, strain background 

(C. elegans) 
dnaEx51 This paper 

Singhvi Lab Database ID: 

ASJ218 

[5ng/µl pASJ37 (pSAR11) 

(PF53F4.13:CED-

10BT17N:SL2:mCherry) + 
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Punc-122:RFP]. Request 

from corresponding 

author. 

strain, strain background 

(C. elegans) 
dnaEx57 This paper 

Singhvi Lab Database ID: 

ASJ225 

[5ng/µl pASJ37 (pSAR11) 

(PF53F4.13:CED-

10BT17N:SL2:mCherry) + 

Punc-122:RFP]. Request 

from corresponding 

author. 

strain, strain background 

(C. elegans) 
dnaEx59 This paper 

Singhvi Lab Database ID: 

ASJ230 

[5ng/µl pASJ37 (pSAR11) 

(PF53F4.13:CED-

10BT17N:SL2:mCherry) + 

Punc-122:RFP]. Request 

from corresponding 

author. 

strain, strain background 

(C. elegans) 
nsEx5268 This paper 

Singhvi Lab Database ID: 

OS10642 

[5ng/µl pAS247 (PF53F4.13: 

WSP-1:SL2:mCherry) + 

Pmig-24:Venus]. Request 

from corresponding 

author. 

strain, strain background 

(C. elegans) 
nsEx5363 This paper 

Singhvi Lab Database ID: 

OS10779 

[5ng/µl pAS247 

(PF53F4.13:WSP-

1:SL2:mCherry) + Pmig-

24:Venus]. Request from 

corresponding author.  

strain, strain background 

(C. elegans) 
nsEx5380 This paper 

Singhvi Lab Database ID: 

OS10825 

[5ng/µl pAS247 

(PF53F4.13:WSP-

1:SL2:mCherry) + Pmig-

24:Venus]. Request from 

corresponding author.  

strain, strain background 

(C. elegans) 
dnaEx160 This paper 

Singhvi Lab Database ID: 

 

[45ng/µl pASJ114-pSAR35 

(Psrtx-1B:TAT-1A) + Punc-

122:RFP]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 

dnaEx162 This paper Singhvi Lab Database ID: 

ASJ498 

[45ng/µl pASJ114-pSAR35 

(Psrtx-1B:TAT-1A) + Punc-

122:RFP]. Request from 

corresponding author. 

strain, strain background 

(C. elegans) 

dnaEx70 This paper Singhvi Lab Database ID: 

ASJ266 

[2.5ng/µl pASJ56-pSAR18 

([PF53F4.13:GFP:PSR-1C) + 

Punc-122:RFP]. Request 
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from corresponding 

author. 

strain, strain background 

(C. elegans) 

dnaEx71 This paper Singhvi Lab Database ID: 

ASJ267 

[2.5ng/µl pASJ56-pSAR18 

([PF53F4.13:GFP:PSR-1C) + 

Punc-122:RFP]. Request 

from corresponding 

author. 

strain, strain background 

(C. elegans) 

dnaEx74 This paper Singhvi Lab Database ID: 

ASJ273 

[2.5ng/µl pASJ56-pSAR18 

([PF53F4.13:GFP:PSR-1C) + 

Punc-122:RFP]. Request 

from corresponding 

author. 

strain, strain background 

(C. elegans) 

wild type CGC Singhvi Lab Database ID: 

N2 

Reference strain 

strain, strain background 

(C. elegans) 

tax-2(p691) I CGC Singhvi Lab Database ID: 

PR691 

 

strain, strain background 

(C. elegans) 

ced-

12(n3261) I 

CGC Singhvi Lab Database ID: 

MT11068 

 

strain, strain background 

(C. elegans) 

ced-12(k149) 

I 

CGC Singhvi Lab Database ID: 

NF87 

 

strain, strain background 

(C. elegans) 

psr-1(tm469) 

I 

CGC Singhvi Lab Database ID: 

CU1715 

 

strain, strain background 

(C. elegans) 

ced-1(e1754) 

I 

CGC Singhvi Lab Database ID: 

CB3261 

 

strain, strain background 

(C. elegans) 

ced-1(e1735) 

I 

CGC Singhvi Lab Database ID: 

CB3203 

 

strain, strain background 

(C. elegans) 

unc-73(e936) 

I 

CGC Singhvi Lab Database ID: 

CB936 

 

strain, strain background 

(C. elegans) 

scrm-

1(tm805) I 

CGC Singhvi Lab Database ID: 

CU2945 

 

strain, strain background 

(C. elegans) 

ttr-

52(tm2078) 

III 

NBRP Singhvi Lab Database ID: 

FX002078 

(Kang et al., 2012) 

strain, strain background 

(C. elegans) 

ced-6(n1813) 

III 

CGC Singhvi Lab Database ID: 

MT4433 

 

strain, strain background 

(C. elegans) 

tat-

1(tm1034) III 

NBRP Singhvi Lab Database ID: 

FX001034 

(Darland-Ransom et al., 

2008) 

strain, strain background 

(C. elegans) 

tax-4(p678) 

III 

CGC Singhvi Lab Database ID: 

PR678 
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strain, strain background 

(C. elegans) 

ced-7(n2094) 

III 

CGC Singhvi Lab Database ID: 

MT8886 

 

strain, strain background 

(C. elegans) 

ver-

1(ok1738) III 

CGC Singhvi Lab Database ID: 

VC1263 

(Consortium, 2012) 

strain, strain background 

(C. elegans) 

ver-2(ok897) 

III 

CGC Singhvi Lab Database ID: 

RB983 

(Consortium, 2012) 

strain, strain background 

(C. elegans) 

ina-1(gm144) 

III 

CGC Singhvi Lab Database ID: 

NG144 

 

strain, strain background 

(C. elegans) 

ced-

10(n3246 )IV 

CGC Singhvi Lab Database ID: 

MT9958 

 

strain, strain background 

(C. elegans) 

ced-

10(n1993) IV 

CGC Singhvi Lab Database ID: 

MT5013 

 

strain, strain background 

(C. elegans) 

ced-2(e1752) 

IV 

CGC Singhvi Lab Database ID: 

CB3257 

 

strain, strain background 

(C. elegans) 

ced-5(n1812) 

IV 

CGC Singhvi Lab Database ID: 

MT4434 

 

strain, strain background 

(C. elegans) 

cng-3(jh113) 

IV 

CGC Singhvi Lab Database ID: 

KJ462 

 

strain, strain background 

(C. elegans) 

ttx-1(p767) V CGC Singhvi Lab Database ID: 

PR767 

 

strain, strain background 

(C. elegans) 

osm-6(p811) 

V 

CGC Singhvi Lab Database ID: 

PR811 

 

strain, strain background 

(C. elegans) 

dyf-

11(mn392) X  

CGC Singhvi Lab Database ID: 

SP1713 

 

strain, strain background 

(C. elegans) 

ced-8(n1891) 

X  

CGC Singhvi Lab Database ID: 

MT5006 

 

strain, strain background 

(C. elegans) 

ver-3(ok891) 

X 

CGC Singhvi Lab Database ID: 

VC610 

(Consortium, 2012) 

strain, strain background 

(C. elegans) 

ver-

4(ok1079) X  

CGC Singhvi Lab Database ID: 

RB1100 

(Consortium, 2012) 

strain, strain background 

(C. elegans) 

egl-15(n484) 

X 

CGC Singhvi Lab Database ID: 

OS10586 

 

Genetic reagent (E. coli) pat-2 RNAi (Kamath, 

2003) 

Singhvi Lab Database ID: 

pASJ_RNAi_1D1 

Ahringer RNAi library: 

WBGene00018832 

 1032 
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