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Assisted morphogenesis: glial control of dendrite shapes
Carl Procko and Shai Shaham

Neurons display a myriad of dendritic architectures, reflecting

their diverse roles in information processing and transduction in

the nervous system. Recent findings suggest that neuronal

signals may not account for all aspects of dendrite

morphogenesis. Observations from C. elegans and other

organisms suggest that glial cells can affect dendrite length and

guidance, as well as localization and shapes of dendritic

receptive structures, such as dendritic spines and sensory cilia.

Thus, besides direct roles in controlling neuronal activity, glia

contribute to neuron function by ensuring that neurons attain

their proper shapes.
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Introduction
The enormous diversity of dendritic shapes has been well

documented [1]. This diversity is in no small part a result

of each dendrite’s unique task: to gather information from

specific synaptic partners or from the environment, and to

transmit this information to the axon. In mammals, den-

dritic arbors can be highly branched, and individual

dendrite branches may possess numerous small protru-

sions termed dendritic spines, which represent postsyn-

aptic terminals of excitatory synapses. The shapes of

dendrites and their substructures can affect synaptic

partner choice as well as the strength and efficacy of

the connections that are made.

Intimately associated with neurons are glial cells, which

comprise the most abundant cell type of the mammalian

brain, and that, like neurons, exhibit dizzying morpho-

logical complexity and specialization [1–3]. Glia are well

positioned to regulate dendritic morphology as they are

not only in close proximity to neurons but also ensheath

neuronal processes and synapses. Despite possible roles

in controlling various aspects of nervous system function,

in vivo studies of vertebrate glia and their roles in the

nervous system have been complicated, primarily

because the ablation or manipulation of glia often results

in neuronal death [4,5]. By contrast, in the invertebrate

nematode Caenorhabditis elegans, neurons survive follow-

ing glia ablations, opening a unique in vivo arena in which

to investigate the effects of glia on neuron function and

shape [6�,7]. Like mammals, the dendrites of C. elegans
neurons come in many shapes and sizes, from the single

long extensions of amphid sensory neurons in the head of

the animal [8], to the complex tiled branches of PVD and

FLP mechanosensory neurons that cover the body [9�].
Associated with C. elegans neurons are 50 glial cells, which

ensheath sensory endings, synapses, and neuron pro-

cesses [10,11]. In this review, we describe recent findings

that highlight the important roles of glia in dendritic

morphogenesis, with a focus on recent studies of

C. elegans.

Growing dendrites: anchors aweigh
The most prominent morphological features of neurons

are their complex and highly stereotyped dendritic arbors

[12]. Some of the signals controlling arbor shapes are

neuron intrinsic. For example, the nuclear protein HAM-

LET is transiently expressed in external sensory neurons

of Drosophila during the initial phases of dendrite out-

growth, and hamlet mutants display altered dendritic

branching patterns [13]. In C. elegans, mutations that

disrupt intrinsic activity of the transmembrane fusogen

EFF-1 result in excessive and disorganized branching of

PVD mechanosensory neuron dendrites, suggesting that

EFF-1 may function to dictate membrane shape and

curvature of the growing neurites [9�]. However, extrinsic

signals seem to play important roles as well. External

signals may be systemic [14], may emanate from other

neurites, as in the case of activity-dependent dendritic

shape determination [15] or dendritic tiling of da neurons

of Drosophila [16,17], or may be provided by glia.

Glia have been implicated in directing process orientation

in the developing vertebrate brain. Neurons generated by

subventricular zone radial glia stem cells often contain a

single process, resembling a dendrite [1,18], which is

dynamically remodeled as neurons migrate to populate

the brain. Neuronal migration is guided partly by the

radial glia to which migrating neurons adhere and upon

which they travel [19,20]. The dendrite-like processes

that emanate from these migrating neurons are oriented

along the radial glial tracks, suggesting specific adhesion.

The basis of the adhesion is not well understood; how-

ever, astrotactin, a neuronal protein suggested to promote

neuron–glia adhesion, is required for granule neuron
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migration and process adhesion in the cerebellum [21]. In

the neocortex, recognition and adhesion of migrating

neurons to radial glia requires integrins [22] and the

gap junction proteins connexin 26 and connexin 43 [23].

Glia-derived cues are known to play important roles in

axon guidance, affecting the shapes of axons by defining

axonal extension paths [24]. Recent evidence suggests

that these same glia-derived axon guidance cues can also

act on dendrites [25]. For example, the extracellular

matrix (ECM) protein Slit is expressed by specialized

midline glia of the Drosophila central nervous system

[26,27], and acts to repel axon growth cones that express

the Slit receptor Robo [28,29]. In robo mutants, the

dendrites of some neurons inappropriately migrate

toward or cross the midline [30], and proper guidance

of these dendrites requires cell autonomous expression of

Robo (Figure 1a,b; [30]). In C. elegans, ventral cephalic

sheath (CEPsh) glia that ensheath the nerve ring, a dense

neuropil analogous to the brain of higher organisms,

express the chemotropic protein Netrin/UNC-6. In unc-
6 mutant animals [31] or in animals lacking CEPsh glia

[7], axon paths are severely disrupted, demonstrating a

role for these glial cells in axon guidance. RIA nerve ring

neurons possess a single neurite whose proximal end is

postsynaptic, resembling postsynaptic sites on dendrites.

In unc-6 mutants this neurite also exhibits severe gui-

dance defects, and fails to navigate toward the CEPsh glia

[32]. Thus, glia can contribute to dendrite guidance via

the secretion of chemotropic factors.

Although dendrite tips may often need to be told where to

go, this is not always the case. In C. elegans, most environ-

mental signals are detected by neurons of the bilateral

amphid sensilla. Each amphid consists of 12 neurons,

each of which extends a single dendrite from the cell body

to the nose-tip, a length of �100 mm. Associated with

these neurons is an amphid sheath (AMsh) glial cell,

which also extends a process to the nose where it

ensheaths the ciliated receptive endings of the dendrites

[8]. Unlike some dendrites that elongate by growing a

process out of a stationary cell body, time-lapse micro-

scopy studies demonstrate that the dendrites of C. elegans
amphid sensory neurons develop by first anchoring the

presumptive dendritic tip to the surrounding environ-

ment at the nose [33��]. Posterior migration of the cell

body then stretches out a dendritic process (Figure 1c;

[33��]). The lengths of the dendrite and glial processes are

correlated: in mutant backgrounds where the dendrites

are too short, the glial process is also truncated [33��]. At

least one component of the dendritic-tip anchor, DYF-7,

is expressed by the sensory neurons [33��], suggesting

that anchoring is partly determined by the neurons them-

selves. However, a second anchor component, DEX-1, is

supplied by non-neuronal hypodermal cells surrounding

the dendrite tip, raising the possibility that a number of

cell types may contribute to creating the anchor.

The DYF-7/DEX-1 anchor seems to be an example of a

structurally unique ECM of diverse functions in different

systems. DYF-7 is a secreted zona pellucida (ZP) domain

protein localized near the tips of anchored sensory den-

drites, while DEX-1 is a secreted zonadhesin (zonad)

domain protein. ZP domains form the ECM surrounding

vertebrate oocytes (the zona pellucida), while zonadhesin

is a sperm protein required for fertilization [34�]. Both
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Figure 1

Glia affect guidance and length of dendrite growth. (a) In Drosophila,

midline glia (green) secrete the guidance molecule SLIT, shown as a dark

green gradient in the extracellular environment. The dendrites of the RP2

motor neuron (orange) are repelled from the midline. The RP2 axon is not

shown. (b) Same as (a), except in a SLIT receptor mutant background

(robo). In these animals, the neurons no longer perceive SLIT (indicated

by a loss of green shading). The RP2 dendrites inappropriately move

toward and cross the midline [30]. (c,d) A model for glial involvement in

dendrite extension of C. elegans sensory neurons. (c) The single,

unbranched dendrite of a C. elegans amphid neuron (orange) extends a

process via retrograde extension. The presumptive dendritic tip of the

neuron is anchored to its local environment (black, horizontal line). The

dendrite is then extended by posterior migration of the cell body

(indicated by arrow). The direction of migration is probably driven by a

gradient of a chemotropic factor (blue gradient). The neuron is

associated with a glial cell (green), which extends a process that

ensheaths the dendritic ending. The glial process probably develops by

retrograde extension also [33��]. (d) When the amphid sheath glial

precursor cell (Bacaj and Shaham, unpublished results) or the sheath

glial precursor found in cephalic sensory structures [7] is ablated, the

dendrite of the associated sensory neuron is too short.
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domains are also present in a-tectorin, a major component

of the tectorial membrane, a highly organized protein-

aceous ECM that anchors the ciliated outer hair cells of

the inner ear [35]. Mutations in dyf-7 and dex-1 exhibit

genetic interactions suggestive of physical binding.

Furthermore, polymerization of DYF-7 may be required

for sensory dendrite anchoring [33��], suggesting that

proper matrix formation is required for attachment.

The observation that a single AMsh glial cell ensheaths all

12 amphid sensory neurons suggests that glia are also in a

position to contribute to the common anchoring matrix.

Indeed, AMsh glia express several ZP domain proteins as

well as other predicted extracellular proteins that could

potentially contribute to the ECM anchor [6�]. Further-

more, ablation in early development of the precursor cells

of the AMsh glia results in unanchored, short dendrites

(Bacaj and Shaham, unpublished results), but does not

affect sensory neuron cell migration. Similarly, the den-

drites of CEP sensory neurons, which are part of another

C. elegans anterior sensory organ, are shortened when their

glial precursors are ablated, or when genes affecting

differentiation of the associated glia are mutated

(Figure 1d; [7]). Strengthening the notion that glia con-

tribute to the ECM required for dendrite anchoring is the

observation that the ECM that tethers Drosophila
mechanosensory neurons is, at least partly, secreted by

glia-like cells associated with these neurons [36]. In

Drosophila type I mechanosensory organs, the ciliated

endings of sensory neuron dendrites are ensheathed by

cells analogous to C. elegans glia. These glia-like cells

produce the dendritic cap, a specialized ECM that covers

the cilia tip and connects it to a stimulating structure,

either a mechanosensory bristle or an attachment cell.

One of the components of this ECM is NompA, a ZP

domain protein made by the thecogen and scolopale

support cells [36]. In the absence of NompA, sensory

neuron dendrite endings fail to form connections to the

dendritic cap, and as a result, animals exhibit mechan-

osensory defects [36].

The studies reviewed here suggest that sensory organ glia

may produce local ECM to which dendrite endings

attach. This ECM, in turn, plays a key role in determining

dendrite length. However, components of this specialized

ECM may have other functions besides process anchor-

ing. Indeed, recent studies suggest the involvement of

glia-secreted proteins in controlling the shapes of den-

dritic receptive structures as well.

Receptive ending shapes: a little help from my
glia
All dendrites possess receptive structures that receive

information, either from other neurons at synapses, or in

the case of sensory neurons, from the environment. For

example, in the mammalian brain, dendrites receive

information at most excitatory synapses through special-

ized structures termed dendritic spines, which appear as

small protrusions on the dendrite process. Dendritic

spines can be remodeled by environmental experience

[37], and changes in spine shape are correlated with

neuronal function [38]. Likewise, the shapes of sensory

neuron dendritic endings are important, as mutations

that affect sensory cilia morphology perturb the ability

of a neuron to respond correctly to environmental stimuli

[39]. These sensory receptive endings are also morpho-

logically malleable. The dendritic receptive structures

that receive information at synapses and those that

receive environmental input share many similarities in

function, shape, and molecular components [40]. Intri-

guingly, both structures are frequently ensheathed by

glia [40–42].

Studies of cultured purified mammalian retinal ganglion

cell (RGC) neurons have been particularly informative in

uncovering details of glia–neuron interactions during

synapse formation, as these neurons form far fewer

synapses when cultured in vitro in the absence of glia

than in their presence [43]. A recent study suggests that

physical contact between RGC neurons and astrocytic

glia may allow these neurons to become competent for

synapse formation. Glia–neuron contact reduces dendritic

localization of the axonal protein neurexin [44], which

reduces synapse formation when expressed in postsyn-

aptic structures [45]. In C. elegans, Netrin/UNC-6 may

play a similar role in excluding presynaptic elements from

postsynaptic compartments [46]. Synapse formation be-

tween RGC neurons is further induced by secretion of the

ECM molecule thrombospondin (TSP) from glia [47].

TSP interacts postsynaptically with the Ca2+ channel

subunit a2d-1 on neurons [48]. Interestingly, the AMsh

glia of C. elegans also secrete a TSP-domain protein, called

FIG-1, which is required for sensory neuron properties

and function [6�]. Sensory neurons in fig-1 mutants are no

longer able to accumulate the membrane dye DiI,

suggesting the speculative possibility that the synapto-

genic effects of TSP on RGC neurons may reflect a role in

setting up postsynaptic architecture.

Studies in C. elegans also provide evidence for roles of non-

neuronal cells in determining the locations of synapses.

The presynaptic HSN neurons form synapses onto the

postsynaptic VC neuron to create part of the circuit

controlling egg-laying behavior in the animal. The pos-

ition of these synapses is determined not by the neurons,

but by guidepost epithelial cells [49]. These guidepost

cells express the transmembrane, immunoglobulin super-

family protein SYG-2, which interacts with and localizes

the SYG-1 immunoglobulin protein on the HSN neurons

[49,50]. Synapses form where SYG-1 is localized [49].

Similarly, C. elegans CEPsh glia may affect the location of

synapse formation between the presynaptic interneuron

AIY and its postsynaptic partner RIA. The Netrin re-

ceptor DCC/UNC-40 is expressed in AIY and localizes
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near the site where the CEPsh glia contact the neuron and

secrete Netrin/UNC-6 [32].

In addition to regulating the formation and localization of

the receptive structures on dendrites, glia also affect the

shapes of these structures. During development of the

mammalian cerebellum, the extension of processes from

Bergmann glia is intimately correlated with changes in

Purkinje cell dendritic spine shapes [51], suggesting that

glia might influence spine shape dynamics. One way they

may do this is via ephrin-Eph signaling. The astrocytic

glia that ensheath hippocampal excitatory synapses

express ephrin A3, while the receptor EphA4 is expressed

in neurons and localizes to dendritic spines [52]. When

EphA4 is activated by adding exogenous ephrin A3, the

dendritic spines retract [52]. By contrast, mice lacking

either ligand or receptor tend to exhibit elongated den-

dritic spines (Figure 2a,b; [52,53�]). The analysis of

EphA4 mutant mice suggests that the consequences of

these spine shape abnormalities may include defects in

hippocampus-dependent learning [53�].

Similar roles for glia in controlling receptive structure

shapes are also seen in C. elegans sensory organs. Late-

stage ablations of the AMsh glia result in changes in the

morphology of the sensory endings of the ensheathed

amphid neurons (Figure 2c,d; [6�]). These changes cor-

relate with behavioral defects of the animals in response

to specific environmental stimuli [6�]. The molecules

contributed by the AMsh glia to maintain dendrite ending

shape are not yet known; however, the identification of a

large number of glia-enriched mRNAs encoding secreted

and transmembrane proteins by microarray analysis [6�]
may provide candidates for mediating shape determi-

nation.

In addition to a maintenance role, the AMsh glia are also

required for plasticity of sensory dendrite receptive end-

ings. In response to environmental stressors, C. elegans
enters a protective, developmentally arrested stage

termed dauer, in which the dendritic sensory endings

of the AWC amphid neurons change shape [54]. This

remodeling correlates with expansion and fusion of the

two bilateral AMsh glia where they ensheath the AWC

sensory endings [54]. By using mutations that specifically

block glial fusion, we have shown that the changes in

AWC shape are delimited by concomitant, dauer-depend-

ent remodeling of glial shape (Procko and Shaham, sub-

mitted). Thus, sensory receptive ending plasticity in C.
elegans depends on glial plasticity.

Conclusions
Dendrite length and guidance, as well as the formation,

placement, and shapes of dendritic receptive structures

can all be affected by glia, suggesting that these cells,

once thought of as merely support cells, play key roles in

shaping the nervous system. The implications of these

studies are profound, as in all nervous systems, neuronal

shape determines circuitry, and the shapes of receptive

structures affect signal strength. Thus, exploration of glial

roles in controlling neuron shape and activity is essential

for understanding how the nervous system is put together

and how it functions. A major unanswered question that

must now be tackled is whether glial roles are permissive

or regulatory. Are glia the sites of control, or a necessary

background? Although the answer to this question is still

unclear, and is likely to be complex, the advent of new

model systems in which to study glia may help in tackling

this important question. Studies of the nematode C.
elegans may prove particularly useful in understanding

glia–dendrite interactions. C. elegans has a small, invariant

number of neurons and glia, which have stereotyped

shapes and connections. Importantly, C. elegans glia are

not essential for neuronal survival. Furthermore, the

facile genetics of C. elegans provides a powerful setting

for gene discovery, which may prove useful for uncover-

ing the molecular basis of glial actions in the nervous

system. The conserved functional, morphological, and

molecular features of mammalian and C. elegans glia

[6�,7] suggest that this ‘simple’ nematode may be able

to teach us something about the role of glia in the de-

velopment and function of the most complex of organs:

the human brain.
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Figure 2

Glia affect the shapes of dendritic receptive structures. (a,b) Mammalian

astrocytic glia (light green) ensheath dendritic spines (orange protrusion)

at excitatory synapses (a). For simplicity, the presynaptic specialization

is not shown. An increase in ephrin A3/EphA4 signaling between the glia

and dendritic spine results in spine retraction (b) [52,53�]. (c,d) The C.

elegans amphid neuron AWC (orange) has a fan-shaped sensory cilium

at its dendritic tip (c). The cilium is ensheathed by the amphid sheath glia

(light green). When the glia is ablated late in development (d), the AWC

cilium fails to maintain its proper shape [6�]. Extracellular matrix in (a)–(c)

is colored dark green.
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