

www.sciencemag.org/cgi/content/full/335/6071/970/DC1

Supporting Online Material for

Control of Nonapoptotic Developmental Cell Death in *Caenorhabditis* elegans by a Polyglutamine-Repeat Protein

Elyse S. Blum, Mary C. Abraham, Satoshi Yoshimura, Yun Lu, Shai Shaham*

*To whom correspondence should be addressed. E-mail shaham@rockefeller.edu

Published 24 February 2012, *Science* **335**, 970 (2012) DOI: 10.1126/science.1215156

This PDF file includes:

Materials and Methods Figs. S1 to S13 Tables S1 and S2 References (25–65)

Materials and Methods

Strains

C. elegans strains were cultured using standard methods (25, 26), and were maintained at 20°C. Wild-type animals were Bristol variety N2. The following alleles were crossed with $qIs56 \vee (27)$, an integrated GFP transgene to mark the linker cell, and him-8(e1489) IV or him-5(e1490) $\vee (28)$ to increase the incidence of males: LGI: dlk-1(tm4024) (Japanese National BioResource Project), mtk-1(ok1382) (C. elegans Gene Knockout Consortium), tol-1(nr2033) (29) LGII: lin-29(n333) (30), rrf-3(pk1426) (14), nsy-1(ky397, ky542) (31) LGIII: pqn-41(ns294), tir-1(qd4) (32), mpk-1(ku1) (33) LGIV: pmk-1(km25) (34), pmk-3(ok169) (35, 36), jnk-1(gk7) (37), kgb-1(km21) (34), kgb-2(gk361) (C. elegans Gene Knockout Consortium) LGV: rde-1(ne219) (16) LGX: sek-1(ag1; km4) (38, 39), jkk-1(km2) (40), mek-1(ks54) (41), mkk-4(ju91) (36)

Transgenic strains:

Transgene	Constructs	Reference
nsEx3131	pMA5 (<i>pqn-41</i> (2.5kb) pro::GFP) + <i>unc-119</i> (+)	This work
nsEx1696-	pMA5 (<i>pqn-41</i> (2.5kb) pro::GFP) (20ng/ul) + pRF4 (30ng/ul)	This work
1698	+ pSL1180 (50ng/ul)	
nsEx2590	pEB18 (<i>pqn-41</i> (13kb) pro::GFP)+ <i>unc-119</i> (+)	This work
nsEx903	3.5kb <i>lin-29</i> A pro::GFP + pRF4	(8)
nsEx2584	pEB17 (<i>sek-1</i> pro::GFP) + <i>unc-119</i> (+)	This work
qIs56	<i>lag-2</i> pro::GFP	(27)
nsEx3081	mig-24pro:: <i>rde-1</i> cDNA::SL2::mCherry + <i>lag-2</i> p::mCherry	Gift from
		M. Kinet
nsEx3132,	pEB21 (<i>mig-24</i> pro:: <i>pqn-41</i> A cDNA) + <i>lag-2</i> pro::GFP	This work
nsEx3168,		
nsEx3204		
nsEx3402,	pEB38 (mig-24pro::pqn-41 B cDNA)+ lag-2pro::GFP	This work
nsEx3403,		
nsEx3381,		
nsEx3404		
nsEx3161,	pEB26 (<i>mig-24</i> pro:: <i>pqn-41</i> C cDNA)+ <i>lag-2</i> pro::YFP	This work
nsEx3166,		
nsEx2916,	<i>lin-48</i> pro:: <i>sek-1</i> cDNA::SL2:mCherry + pRF4	This work
nsEx2917,		
nsEx2358	pEB16 (<i>mig24</i> pro:: <i>sek-1</i> cDNA:: <i>sek-1</i> 3' UTR) (25ng/ul) +	This work
	pRF4 (25ng/ul) + pSL1180 (50ng/ul)	
nsEx2867,	<i>mig-24</i> pro:: <i>sek-1</i> cDNA::SL2:mCherry + pSL1180	This work
nsEx2868		
nsEx3191	pEB22 (<i>mig-24</i> pro:: <i>pqn-41</i> A cDNA::GFP)+ <i>unc-119</i> (+)	This work
nsEx3192	pEB24 (<i>mig-24</i> pro:: <i>pqn-41</i> B cDNA::GFP)+ <i>unc-119</i> (+)	This work
nsEx3134 -	pEB28 (<i>mig-24</i> pro:: <i>pqn-41</i> C cDNA::GFP) + <i>unc-119</i> (+)	This work
3137		

nsEx3394, nsEx3378,	pEB27 (<i>mig-24</i> pro:: <i>pqn-41</i> C exons 4 and 5) + <i>lag-2</i> pro::YFP	This work
nsEx3395		
nsEx3379	pEB32 (<i>mig-24</i> pro:: <i>pqn-41</i> C cDNA)+ <i>lag-2</i> pro::YFP	This work
nsEx3380,	pEB33 (mig-24pro::pqn-41 B N-terminus)+ lag-2pro::YFP	This work
nsEx3396		
nsEx3420	pEB34 (<i>mig-24</i> pro:: <i>pqn-41</i> C ΔCC1-2)+ <i>lag-2</i> pro::YFP	This work
nsEx3397,	pEB35 (<i>mig-24</i> pro:: <i>pqn-41</i> C ΔCC3-4)+ <i>lag-2</i> pro::YFP	This work
nsEx3398,		
nsEx3399		
nsEx3400,	pEB36 (<i>mig-24</i> pro:: <i>pqn-41</i> C ΔCC5-6)+ <i>lag-2</i> pro::YFP	This work
nsEx3401		
nsEx3384	pEB37 (<i>cdh-3</i> pro:: <i>pqn-41</i> C) + <i>lag-2</i> pro::YFP	This work
nsEx3385		
nsEx3386		
nsEx3405,	pEB39 (<i>mig-24</i> pro:: <i>pqn-41</i> C Proline sub.)+ <i>lag-2</i> pro::YFP	This work
nsEx3406		
nsEx3407,	рЕВ40 (<i>mig-24</i> pro:: <i>pqn-41</i> С ΔМ1-А27)+ <i>lag-2</i> pro::YFP	This work
nsEx3408		
nsEx3409,	pEB41 (<i>mig-24</i> pro:: <i>pqn-41</i> C ΔA80-V98)+ <i>lag-2</i> pro::YFP	This work
nsEx3410		
nsEx3411	pEB42 (<i>mig-24</i> pro:: <i>pqn-41</i> C ΔQ417-R427)+ <i>lag-2</i> pro::YFP	This work
nsEx3412,	pEB43 (<i>mig-24</i> pro:: <i>pqn-41</i> BΔN-terminal CC domains 1)+	This work
nsEx3413,	<i>lag-2</i> pro::YFP	
nsEx3414		
nsEx3415,	pEB44 (<i>mig-24</i> pro:: $pqn-41$ B Δ C-terminal CC domains 2)+	This work
nsEx3416	<i>lag-2</i> pro::YFP	

RNA interference assay

RNAi was performed by feeding (42-44). The OS2570 (rrf-3(pk1426) II; him-8(e1489) IV; qIs56 V) strain was used for the screen. Bleached embryos from OS2570 gravid hermaphrodites were left in M9 overnight to synchronize at the L1 stage. 250 L1s, of which ~30% were male, were added to each RNAi plate. Animals were grown at 20-22°C, and scored 48 hours later, when they were approximately 2-4 h adults, using a fluorescent dissecting scope (Leica). We used published clones from the Ahringer feeding library (45, 46). Of the 16,757 library clones, only 16,208 clones were screened as 549 failed to grow. In addition, 1,924 non-overlapping clones from the ORFeomebased RNAi library (47) were scored. Combined, the libraries represent 89% of the 20.416 C. elegans protein coding sequences based on Wormbase curated version WS221. For the genome-wide screen, 12-well RNAi plates were made by adding Isopropyl-beta-D-1-thiogalactopyranoside (IPTG; Sigma-Aldrich; 1 mM final) and Carbenicillin (Novagen; 25 ug/mL final) to standard NGM agar (26), and were used within 10 days of pouring. Glycerol stocks of the RNAi clones were thawed and inoculated into 96 well plates containing 225 ul LB with Ampicillin (50 ug/mL) using the PerkinElmer Life Sciences MiniTrak V liquid handling robot. Cultures were grown overnight at 37°C without shaking. The 12-well RNAi plates were then seeded with 175 ul of the overnight culture using a Perkin Elmer MultiProbe II HT EX liquid handling machine. At least two hours after seeding, 250 synchronized L1s were added to each well. The empty RNAi clone vector, L4440, was used as a negative control along with a GFP RNAi clone as a positive control.

Generating pqn-41(ns294)

pqn-41(ns294) deletion mutant was isolated using published methods (48, 49). The following primer pairs (5' to 3') were used for screening *pqn-41*: poison primer GCAATCACAGGAGAAGAAGCTTCCG; inner primers,

CACATAAATCACCCTTTTCTATCCGCC and

CGATTTCCTCGTCATTTTCTACCGC; outer primers,

AACACCGCAGAGCCTTACGAC and GTAAGGCGCTTCGTGGTTGC. The strain was backcrossed to N2 five times after isolation. The deletion spans a region from 145 bp upstream of exon 18 to 192 nucleotides downstream of the exon 18 start site.

Germline transformation

Germline transformation was carried out as described (50). For pqn-41 rescue studies all plasmids were injected into pqn-41(ns294) III; him-8(e1489) IV hermaphrodites with lag-2pro::YFP as a transformation marker (gift from Mihoko Kato and Paul Sternberg, (51)). For GFP expression studies, all plasmids were injected into unc-119(ed3) III; him-8(e1489) IV hermaphrodites with unc-119(+) (52) as a transformation marker, unless otherwise noted. Several transgenic lines containing the pqn-41(2.5 kb) pro::GFP construct were generated for this study having the genotypes: unc-119(ed3) him-8(e1489); nsEx3131, him-5(e1490); nsEx2364 and him-5(e1467); nsEx1696-1698. All plasmids were injected at 50 ng/ul unless otherwise noted. pSL1180 is an empty cloning vector used to increase the DNA concentration of injection mixtures.

Plasmid Construction

Construct	Description	Notes	
pRF4	<i>rol-6</i> (su1006)	(50)	
pMA5	<i>pqn-41</i> (2.5kb)	N2 genomic sequence was amplified using primers:	
	pro::GFP	5'-CTGACTCTAGAGCGGGGACAATGC and 5'-	
		ACAGTACCGGTAGCATTCCACTCCAG and	
		ligated into pPD95.75 (Andrew Fire) as an	
		XbaI/AgeI fragment.	
pEB16	mig-24pro::sek-1	sek-1 cDNA::sek-1 3'UTR was amplified from odr-	
	cDNA::sek-1 3' UTR	<i>3</i> p:: <i>sek-1</i> cDNA construct, gift from Kunihiro	
		Matsumoto (53), using 5'-	
		gtctctctagagGTACCcatcatggag and 5'-	
		tttttttACtAGtaaaaaaaaatctttactcgagc. This	
		KpnI/SpeI fragment was ligated into pPD95.79	
		(Andrew Fire) containing mig-24 promoter (gift	
		from Kiyoji Nishiwaki) between BamHI/KpnI.	
pEB17	4.6 kb <i>sek-1</i> pro::GFP	4.6 kb of N2 genomic DNA was amplified using	
		primers 5'- ctaagagcatgctagaaacttatgagtgttctgtg and	

All primers sequences written 5' to 3'

		5'- gatttttcttaAcCGGtcgctccatgatgtaag The
		amplicon was ligated into pPD95 75 (Andrew Fire)
		as an SphI/AgeI fragment
pEB18	pan-41(13kb)	N2 genomic sequence was amplified in sections
PLDIC	nro"GFP	starting with the left most primer 5'-
		goettetgot GCATGC goettaccagagg-3' containing
		an Sublicity The right most primer 5'-
		gatagagter a CCC test categories the ston
		codon and contains an Agel site. The SphI/Agel
		fragment was lighted into nPD05 75
nFB21	mig 2/pro: nan_41	nam 41 cDNA was amplified in fragments from
pedzi	mig-24pi0pqn-411X	aDNA libraries generated from N2 animals
	CDINA	Endogenous restriction sites were used to light
		emplicants. The mig 24 pro was cloped as an
		Matt/East fragment into the nSM vector (Cori
		Nou/rsei fragment into the point vector (Con
-ED77		$= ED_{12} (max_{12} 41(2.51ch) max_{12} ES_{242} 4aDNA ::GED in$
реба	mig-24piopqn-41A	pEB15 (pqn-41(2.5K0) pi0r55A5.4CDINAOFF III
	CDNA::OFF	pPD95./5, Addgene) was digested with bgill/Apar
		to generate a fragment containing the last two pyn-
		41 exons with the stop couon abolished in frame
		With GFP – unc-54 3 UTK. This was then figure
5004	·	100 pEB21.
рев24	mig-24pro::pqn-41b	pEB13 (pqn-41(2.5Kb) pro::F55A5.4CDNA::GFF in
	CDNA::GFP	pPD95./5, Addgene) was digested with Bgill/Apai
		to generate a tragment containing the last two pqn-
		41 exons with the stop codon abolished in frame
		with GFP – unc-54 3'UTK. This was then ligated
5007		into pEB23.
pEB27	mig-24 pro::pqn-41C	The cDNA sequence was amplified as a Kpni/Bgill
	exons 4 and 5	fragment from pEB26 using primers
		ccagCTCCAACcggtAATGGAACG and
		CAGACGAATAAGATCTTGGCCATTCGGTC.
		The amplicon was then ligated back into KpnI/BgIII
		digested pEB26.
pEB28	<i>mig-24</i> pro:: <i>pqn-41</i> C	pEB13 (<i>pqn-41</i> (2.5kb) pro::F53A3.4cDNA::GFP in
	cDNA::GFP	pPD95.75, Addgene) was digested with BgIII/Apal
		to generate a fragment containing the last two pqn-
		41 exons with the stop codon abolished in frame
		with GFP – unc-54 3'UTR. This was then ligated
		into pEB26.
pEB30	<i>lag-2</i> p::mCherry	An AgeI/SpeI fragment containing mCherry::unc-
		54 3'UTR from the <i>mig-24</i> p::mCherry plasmid was
		ligated into AgeI/SpeI digested lag-2p::YFP
		plasmid (gift from Mihoko Kato and Paul
		Sternberg, (51)).
pEB32	<i>mig-24</i> pro:: <i>pqn-41</i> C	The cDNA C sequence was amplified as a

	•	
	cDNA	KpnI/BgIII fragment from pEB23 (<i>mig-24</i> pro:: <i>pqn-41</i> B cDNA). This was then ligated to KpnI/BgIII digested pEB19 (<i>mig-24</i> pro::F53A3.4 cDNA, pPD95.75, Addgene) between the <i>mig-24</i> promoter and the second to last exon of <i>pqn-41</i> . This created pEB26, which contains a Q66H mutation in the cDNA. pEB32 contains the corrected WT cDNA sequence, and behaves the same as pEB26.
pEB33	<i>mig-24</i> pro∷ <i>pqn-</i> 41B∆polyQ	The cDNA sequence was amplified as a Nsil/SacII fragment from pEB23 using primers gtcGCTGGAGTGGAAtgcaTGTAAAAATTG and cggaaattCCgCgGattgtcACGATTGTTGATGTTGC GAC. The amplicon was ligated into mig-24p::1- 4495 cDNA in pSM (Derived from pPD95.75, Addgene) using Nsil/SacII.
pEB34	<i>mig-24</i> pro:: <i>pqn-</i> 41СΔ 33-139аа	The deletion in PQN-41C coiled-coil domains 1 and 2 was generated using PCR splicing (http://www.methods.info/Methods/Mutagenesis/P CR_splicing.html). The amplicon was ligated into pEB26 as a KpnI/EcoRI fragment.
pEB35	<i>mig-24</i> pro:: <i>pqn-</i> 41СΔ 151-277аа	The deletion in PQN-41C coiled-coil domains 1 and 2 was generated using PCR splicing (http://www.methods.info/Methods/Mutagenesis/P <u>CR_splicing.html</u>). The amplicon was ligated into pEB26 as a KpnI/EcoRI fragment.
pEB36	<i>mig-24</i> pro:: <i>pqn-41</i> CΔ 286-397aa	The deletion in PQN-41C coiled-coil domains 1 and 2 was generated using PCR splicing (http://www.methods.info/Methods/Mutagenesis/P CR_splicing.html). The amplicon was ligated into pEB26 as a KpnI/EcoRI fragment.
pEB37	<i>cdh-3</i> pro:: <i>pqn-41</i> C	The <i>cdh-3</i> promoter was amplified from N2 genomic DNA as a BamHI/KpnI fragment using primers gaagctttttggtagGgAtCctgtaatttttg and gaacaacaacggTACcgagacctctaattgtttc. The amplicon was ligated into pEB32.
pEB39	<i>mig-24</i> pro:: <i>pqn-41</i> C coiled coil defective	Two proline substitutions were introduced into the middle of PQN-41 C coiled coil domains 2, 4, and 6 using a modified PCR splicing strategy. Using pEB32 as the template, four PCR reactions were performed using the following primer sets: tggcgGTACCCATGGCGGCTGCAATAAATG and

		CTCTTCTCTTCC~CTTCTTCT~CTTCTTCTT
		GCAG.
		GAACAG and
		GTGCCTGCGCCTGTGgCTGAGCAgGTGCCTG
		CTGTACCTG:
		CAGGTACAGCAGGCACcTGCTCAGcCACAG
		GCGCAGGCAC and
		GAGCTTGAGCCTGGGgGGGCTGCTGgGGCGG
		CCTGTTGCTG:
		CAGCAACAGGCCGCCcCAGCAGCCcCCCAG
		GCTCAAGCTC and
		CTCAGTTGGAATTCATCGTCCATTC. The
		individual PCR reactions were gel extracted and
		used as the template for a final round of PCR using
		the first and last primers listed above. This
		produced an amplicon flanked by KpnI/EcoRI sites
		that was then ligated back into pEB32.
pEB40	mig-24pro::pqn-41C	The deletion in PQN-41C conserved domain was
	ΔM1-A27aa	generated using PCR splicing
		(http://www.methods.info/Methods/Mutagenesis/P
		<u>CR_splicing.html</u>). The final amplicon was ligated
		into pEB32 as a KpnI/BglII fragment.
pEB41	mig-24pro::pqn-41C	The deletion in PQN-41C conserved domain was
	$\Delta A80$ -V98aa	generated using PCR splicing
		(http://www.methods.info/Methods/Mutagenesis/P
		<u>CR_splicing.html</u>). The final amplicon was ligated
		into pEB32 as a Kpnl/BglII fragment.
pEB42	<i>mig-24</i> pro:: <i>pqn-41</i> C	The deletion in PQN-41C conserved domain was
	$\Delta Q417$ -R427aa	generated using PCR splicing
		(<u>http://www.methods.info/Methods/Mutagenesis/P</u>
		<u>CR_splicing.html</u>). The final amplicon was ligated
ED 43		into pEB32 as a BgIII/EcoRI fragment.
pEB43	mig-24pro::pqn-41B	The deletion in PQN-41B N terminal coiled coil
	Δ263-440aa	region I was generated using PCR splicing
		(<u>http://www.methods.info/Methods/Mutagenesis/P</u>
		<u>CR splicing.html</u>). The final amplicon was ligated
	: 24 (17)	Into pEB38 as an EcoKV/Nsil fragment.
pEB44	<i>mig-24</i> pro:: <i>pqn-41</i> B	The deletion in PQN-41B N terminal coiled coil
	۵083-892aa	region 2 was generated using PCR splicing
		(<u>nup://www.metnods.into/Metnods/Mutagenesis/P</u>
		<u>CK splicing.ntml</u>). The final amplicon was ligated
	1	Into pEB38 as an ECOK V/NSII fragment.
	lin-48 pro::sek-1	<i>lin-48</i> promoter was amplified from N2 genomic
	cDNA::SL2:mCherry	DINA using primers 5-

	gaaaatatggcCGgCCttttgatgatg and 5'-
	and insorted into
	caalcagege Tagecalacegigaale, and inserted into
	pSM-SL2-mCherry vector (Cori Bargmann) as a
	Fsel/Nhel fragment. sek-1 cDNA was amplified
	from pEB16 using primers 5'-
	aatggcgGTcgacatcATGGAGCGAAAAG and 5-
	ATTCGGCggtaCCGATGCtcaTCGTCGCCAAAC,
	and ligated into vector as a Sall/KpnI fragment.
mig-24 pro::sek-1	The mig-24 promoter was amplified from mig-
cDNA::SL2:mCherry	24p::mCherry construct using primers 5'-
	GTCGACTCTAGAGGccggcctatcagttatc and 5'-
	ctACCGGgctagccattttaataaaattgtgtaag. The
	Fsel/NheI fragment was then ligated into digested
	<i>lin-48</i> pro:: <i>sek-1</i> cDNA::SL2-mCherry construct.
mig-24pro::rde-1	The mig-24 promoter was ligated into pSM-SL2-
cDNA::SL2::mCherry	mCherry vector as a BamHI/KpnI fragment. The
	rde-1 cDNA was amplified in fragments from
	cDNA isolated from N2 animals. The full cDNA
	was ligated as a KpnI/KpnI fragment. (gift from
	Maxime Kinet).

lin-29(n333) sequencing

Genomic DNA was purified from lin-29(n333); qIs56 him-5(e1490) animals. Primer sets were designed within intronic sequences to amplify each exon including splice donor/acceptor sites. In lin-29(n333) mutants, the splice acceptor of exon 5 was found to have a G to A mutation at the conserved splice acceptor site.

pqn-41 transcripts

Structures of the *pqn-41*A and B transcripts were suggested by Wormbase (<u>www.wormbase.org</u>) predictions and verified using RT PCR. *pqn-41*C structure was suggested by RNAseq experiments (*54, 55*) and confirmed by PCR. All three transcripts are trans-spliced to the SL1 spliced leader.

pqn-41*C* ectopic expression

pqn-41C was expressed in the distal tip cell using the *mig-24* promoter (pEB32). Expression in the anchor cell was induced using a *cdh-3* promoter fragment (*56*) in plasmid pEB37. In both cases defects in the presence of cells as well as egg-laying defects were examined and none were found.

Cell Survival Assay

Late L4-stage males were defined by having maximal tail retraction completely to the base of the tail taper. Two hours from this stage was defined as a zero-hour adult male. Linker cell death was scored at various time points after this stage, and was recorded if both fluorescence and DIC microscopy revealed either the complete absence of a GFP-marked linker cell, or a linker cell with a corpse morphology characterized by cell rounding, cytoplasmic volume reduction, nuclear envelope breakdown, or large-scale blebbing. Extra cells in the anterior pharynx were counted by DIC microscopy (57).

Scoring pqn-41 expression

0-2 hour adult *lin-29* or *sek-1* mutant males containing the *nsEx3131* transgene were scored for the presence of a GFP expressing linker cell in the cloacal region or along the linker cell migration path. The fraction of animals expressing GFP was then divided by the fraction of animals with surviving linker cells displayed in Fig. 4B.

Light microscopy

Linker cell death scoring and GFP expression patterns were analyzed by conventional fluorescence microscopy using an Axioplan II compound microscope (Zeiss) equipped with an AxioCam CCD camera (Zeiss). Images were acquired and analyzed using AxioVision (Zeiss). Alternatively, images were acquired using DeltaVision Image Restoration Microscope (Applied Precision) equipped with a Photometrics CoolSnap CCD camera (Roper Scientific). Acquisition, deconvolution, and analysis of DeltaVision images were performed with Softworx (Applied Precision).

Electron Microscopy

Two to three hour adult males of the genotype pqn-41(ns294) III; qIs56 him-5(e1490) V with surviving linker cells were first imaged using an Axioplan II compound microscope (Zeiss) to record the position of the linker cell. Animals were then fixed, stained, embedded in resin, and serially sectioned using standard methods (58). Images were taken with a FEI Technai G2 Spirit BioTwin transmission electron microscope with a Gatan 4K X 4K digital camera.

Statisitcal methods

All comparisons employed chi-squared statistics.

fig. S1. *pqn-41* is not required for linker cell migration or *C. elegans* sex determination. (**A**) Males of the indicated genotypes were assessed for linker cell migration defects. Number of migration defective cells/total number of surviving linker cells (*nhr-67*, *pqn-41*) or total animals observed (wild type). *nhr-67*(RNAi) is a positive control (*51*). (**B**) Chromosomally XX animals of the genotype *tra-2(ar221ts)*; *xol-1(y9)*; *mig-24* promoter::GFP (integrated transgene) were grown at 25° to promote male development (*59*), and the proportion of animals with visible linker cells were examined at the indicated time points (n>50 for each time point). The observed kinetics match those previously described for XO males (*8*), indicating that the linker cell dies normally in these masculinized XX hermaphrodites despite other morphological features, such as tail structure, that do not fully transform to the male pattern. (**C**, **D**) Male and hermaphrodite *pqn-41(ns294)* animals, respectively. Note full sexual differentiation of both tail soma (black arrow), gonad (white arrow), and mating structures (asterisks). Scale bar, 50 microns. (**E**) Table showing a perfect correlation between gonadal and somatic sex in *pqn-41(ns294)* mutants, indicative of no defects in sex determination.

fig. S2. EM of surviving linker cell in Fig. 1D. (A) Enlargement of dashed box in Fig. 1D. ER, endoplasmic reticulum. Arrow points to where the outer nuclear membrane is abnormally expanded. (B) Swollen and lightly staining mitochondria (arrows) in linker cell shown in Fig. 1D. Asterisks, normal mitochondria in neighboring cell. Scale bars in (A, B), 2 µm.

Α	MKPKKLQQGS ISDNLCLPKY LQEFPIKIEQ IRRRECLVDP EKKGCEIQGM RRLEEEERDQ EENLVKKEEI QIRQILRAAA DLKAYEEAYS IKNTGDCAFE NQSSIDRENL INHDVVVKKW FEKLLSEYVE ENQLRQRQQN NHDFVTPKAP TAQPSAAAAK GLIGISAATQ PFLTAGSGSA DIQNYKQSQE SAHAPPPPAS	DSAHT ASYQT FPVKk QNLIS UPVKK NDKKL ODFE DAKGY LRQQL LRKTK KVELK VESS FFDLT QDKQK RPASE AQLQA QLQA QLQA SAPIV	SDTE STKTCE KTAKKLQKTQKKLQKSKKTAKKR DE EFRIFFPPPRVNPPIKTPFRLHNTNCEHRDW GWRISHKSMKSLVLMDKRRAEWLKMHNLYRKSEIRKAIWTIERKGAKKLDEMPGNWRISREKRNSLD REKTAKNWRKIAVLVCFKRKTTTKNRYLRRPKTKNQRKIEFRRPKTSKNRKLRLKIRPRVRFIDRKL WIRQEKAENLRIFQEKQURALQEQQEDAEWEQIEAQRANSDDVIEDKSLKMEVLDIVKHKNRNWIVV LESEFNEQQTVRVDRQNVDHKFRKMRDEKKEIVEFVSLPFYKPKPRINYPTNAGEYEQEIELER EIEDRNHFKKWQKRRNLIKIYRNSIRETWRRRRGNSTENSDSESSEASEPPDDVITKEEPTDFS HKIEEDVKPDVYKLIMIKMISPPSPPKKGILLKKDTKKRGEKRVKTVQFKLTKRQKLAKLWKPPTW 'KIRSGRSRYNEKIRRLNHFNGQKLGFKSAPTRIDTFEKGIDVREQPIPFVEEFVLDDHALLTFASFD VIDEFWRHQCLKNIESFEKDDVERAEMRHEIEKLETEMRCQKMNENAEIDQENIESFETAGRQIENI 'KILSGRSRYNEKIRRLNHFNGQKLGFKSAPTRIDTFEKGIDVREQPIPFVEEFVLDDHALLTFASFD VIDEFWRHQCLKNIESFEKDDVERAEMRHEIEKLETEMRCQKMNENAEIDQENIESFETAGRQIENI 'KILSGRGSPRKVVRKAKETSGYWDFRWNFTKFAWKSDVLKRKQRFGKHSARRALAFGVKIEEIHSETE IQQVSIDRKIDIITKITITINDVRAKAIEMQKQIVEKAVDLMTKSRLDEAAREHQEWLQSDECKR 'SSSPATSFVTQVVVPRLTHLEERLIELGEVEHWVQHTQRLQSFERNYHHLQQQHNHQNFQQQQG 'RXYTKRKALLNTAVASSSDQNGMKSPGSSAMENAAAAQAAQAAQATTPTPTVNLPDVVAIAAAAA QQAAQAAAAAAAAAAAAQAQQCUSIYINTSVAPGAQAASAQGGGGQVVAAQQSNQAATAFAEARLLQGLP 'SALSQLNQL GAAAPGAPGTLNGLQFPANAALGQLAAASASSSTSTPSSSSHHKKSSSPHRPRDVT 'GAPRQGATPQAAPATTPATTSQHQQSI E FSCPPPQLSGGAAYAGNPQLMMAALNEATRAVA' BYRH	
	PVVRPPSAAT	QQQP	SVTSQASQQQQQEQQEQQEQQQRAAAIAAAAAFSQQAPPAQASQATSAAQQIATSMGUQAAQAAVUUUUVQ	
	TALQQQMERG	AAAGA	RASLPYQLQLAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQAQA	
	QQMQQQQIQQ QYEALLQQQR	MLMAG	QGGPNGQDLIRLLQAAQQQSQAQQQQQQQQAVVAAAQQQQQQQQHNQQLAAAQAAAAAAAAGRPTQH_ WQAAAGASAQQQAAAAAAAQAAQO=QQQLLGLQPNLLLAQVQQAQQQAQAQAQAQAQAQAQAQAQAGA	
В	C. brenneri C. briggsae C. elegans C. remanei	1 1 1 1	<pre>#AAAINEATRRVAATPKPPAARPPSAA-VAVSAAQA-SNLAAAAAAQQAQQQQQQR-SLIGIATSHEPTAV-TQAQPTNQQIA MAATITEAARRVAATPKPPIARPPSAA-HTT-QA-NQISAAQQ-QQQRNLIGIATSAQQAAPATQATPTLQQIA MAAAINEATRRVAATPKPPIVARPSAATQQQPVSVTS-QA-SQQQQQFQQIQQQRAAAIAAAAAATSQQAPPAQASQATSAAQQIA MAAAINEATRRVAATPKPATARPPSAA-VTT-QSITQLATAPPH-QQQRPQAAAGLIGIATSSQQATPTLQQVA 7</pre>	0 0 4 1
	C. brenneri C. briggsae C. elegans C. remanei	81 71 85 72	TSHGV-PAAQVNELAQQQAAL-Q-LLLQQQQ-QAREQQSL-AQQQQQQLPNMLAQAQ-AQQQQQQA-QVPASAAAT-AATQ-QAQA-16 TSAGNQPA-QVNDLAQQQA-L-A-MIMQQQREQALQA-QQ-S-QQILAMIQQ-QQQQ-H-L-QQQ-QQQQQA-QQQAAQ-QQ-Q-QGAP-14 TSHGLQPA-QVTDLVNQHA-Q-QYLLLQQQQQ-QQQR-E-E-QQ-QQQQL-QAQQVQQQLIA-H-L-L-LGGGH-QA-Q-QAAPA 15 TSHGLQPS-QVNDLATQQA-QYQ-MLLQQKA-QEQVGYRKI-GILSNFQAEK-#-VP-RVIFSQK-TRNF-SPENRI-FQAAAQAQA-QSQQQQ-15	2 2 1 3
	C. brenneri	163	Q-AQAQAQAQAQAQA,AAAQQQQ-QO-L-QIQMILSALQQQP-HNPFALQ-IAQ-QVQ-QS-Q-PA-QPGQADQIAVL 22	8
	C. elegans C. remanei	152 154	V-SVAQQQ-Q-Q-QVAAAAAAQQQMNAQ-LQNI-MILTALQQQMERGAAAGAAAS-L-PYQLQ-LAQAQAQAQAQQAPPTSQPSQA-A-TFQQQQQLDLI 24 LFALLQQQ-Q-Q-PASAVLNPQQQQHQQHLQQL-LLLNAMS-NPQMY-LQQLQQPTIQ-QPGQ-PAA-QPAPSVTPQQQQQLDLF 22	0
	C. brenneri	229	RQIEQQ-QAALAAQAQAQAQAQAQAQAQAQAQAQQA	7
	C. briggsae C. elegans	202	RQLEA-AQ-QAQTHAQAQAQAQAQAQAQAAQAQAQAQAQQQAQLQ-QLLQ-LTAAGGGAGAPGGQQQLIRLLLQ-A-QQQ 27 RQHEA-VAQVQ-QAHAQAQAQAQAAQAQ-Q-MQQQ-QLILQ-U-LAGQG-GPNGQQ-DLIRLLQ-AAQQQ 29 RQHEA-VAQVQ-QAHAQAQAQAQAAQAQQ-Q-MQQQ-QLILQ-LAGQG-GPNGQ-DLIRLLQ-AAQQQ 29	5 8 2
	C. brenneri	230	RQUBRQRQRQRQRQrL=RQRQR0RQRRRQRQRRRQQQRQQQRQQQQQQQQQQQQQ	1
	C. briggsae C. elegans	276	-TAQLQQQQ-AQQ-AAA-AAAAAAQQQQQQQ-QQQAAQHQQQQQAAQHVSFGEYSNLENQNRNQQLAAAQAAAAQAAAAQAAAAAQAAAAACAAAG-PFTO-N-0-34	3
	C. remanei	323	VAQQQQQQQQVAAAQQQQQQ-AQQQAAAAQQQAAQQQQQQQQ	8
	C. brenneri	342	-FDALMQQ-RLMQAQQ-QQQQQ-QQQP-QAQQLQQLLGMQP-EFFAAV-AQQQAQAQAQAQAQAQAQAQA-QAQAQQQQ 400	6
	C. elegans C. remanei	348 389	-YEALLOQORILAAQO-QAAAGASAQOQAAAAAA-QA-QAQQOQ-Q-QQULGGLQP-N-LLLAQ-V-Q-QA-Q-QAQAQAQA 41(QYEALLQQQRLLAAQQAQVAAQQQQQ-QPQQQLQQQQQQQQQQQQQQQQQQQQQQQQ	6
	C. brenneri	407	OOKPPOMPNGR 417	
	C. briggsae C. elegans	430 417	OCKPPOMPNGR 440 OCKPPOMPNGR 427	
	C. remanei	481	DOKPPTLPNGR 491	

fig. S3. PQN-41 is a polyglutamine-repeat protein. (**A**) PQN-41B sequence, all depicted amino acids. PQN-41A, all amino acids except those that are surrounded by black box outline. PQN-41C, amino acids highlighted in yellow. Glutamines are in red. (**B**) Alignment of PQN-41C among the indicated related nematodes. Boxed amino acids, highly conserved domains.

fig. S4. The average inter-glutamine distance in PQN-41C is the second smallest in the predicted *C. elegans* proteome. Plot of the number of predicted protein sequences in the *C. elegans* genome containing a given average inter-Q distance. The number of proteins with an average inter-Q distance between two consecutive powers of 1.1 was determined using a custom perl script, and plotted. The log base of 1.1 was used to give the tightest fit to the log-normal distribution.

fig. S6. Structure/function dissection of PQN-41. (**A**) Table showing the effects of expressing wild-type and mutant versions of PQN-41C on linker cell survival in *pqn-41(ns294)* mutants. *, significantly different from *pqn-41(ns294)*, p<0.01. Numbers are averages of the means \pm SD of two or more independent lines, except for CC1/2 deletion, where only one line was obtained, and error is SEM. n>50 for each line. Yellow, predicted coiled-coil. Gray, regions conserved in nematodes. Red, linker domains between coiled coils. Coil-breaking Proline mutations are indicated in blue. CC, coiled coil. CD, conserved domain. (**B**) Table showing the effects of expressing wild-type and mutant versions of *pqn-41*A and B on linker cell survival in wild-type or *pqn-41(ns294)*, p<0.01. **, significantly different from wild type, p<0.01. Numbers are averages of the means \pm SD of two or more independent lines, except for *pqn-41B* expression in wild type where only one line was scored and error is SEM. n>50 for each line.

fig. S7. PQN-41B is also predicted to contain coiled-coil domains. (**A**) An analysis of coiled-coil formation probability of PQN-41B N-terminal sequences using the COILS algorithm (*60*), and a sliding window of 28 amino acids. (**B**) Annotation of predicted coiled-coil domains (Green) in the PQN-41B N-terminal protein sequence.

fig. S8. A 2.5 kb *pqn-41*::GFP reporter is expressed nearly exclusively in the linker cell as the cell begins to die. (A) Same as Fig. 3A except using the 2.5 kb *pqn-41*::GFP reporter in Fig. 2A. (B) Same as (A) except fluorescence image only. Scale bars, 10 μ m.

fig. S9. Mutations in *sek-1* block linker cell death. (A) Merged DIC and fluorescence image showing linker cell (arrow) survival in a young adult male of the indicated genotype. (B) Histogram depicting linker cell survival in the indicated strains. Number within bars, exact percentages. Error bars, SEM. $n \ge 87$ except for *lin-29*; *sek-1* where n=28.

fig. S10. Transcription of *pqn-41*, *lin-29*, and *sek-1* in mutant backgrounds. (A) Fluorescence image of a young adult male with a surviving linker cell (arrow). The 2.5 kb *pqn-41*::GFP reporter was used. (**B**,**C**) Merged DIC and fluorescence image of young adult males of indicated genotypes and carrying indicated GFP transgenes. Scale bars, 5 μ m. Expression of *pqn-41* and *sek-1* GFP reporters in wild-type animals is shown in the main Figures 3 and 4; *lin-29* GFP reporter in wild-type was previously reported (8).

fig. S11. Electron micrograph of a surviving linker cell in a lin-29(n333) mutant. Although some swelling of the ER is evident (white arrows), the nuclear envelope remains generally intact and is not as severely dilated as in pqn-41(ns294) mutants. Note that mild crenellation of the nucleus is evident. MT, mitochondria. nl, nucleolus.

fig. S12. p400 and MED12 have polyglutamine tails. Graphs depict the fraction of amino acids that are glutamine in a 200 amino-acid sliding window initiating at the amino acid position indicated. (A) mouse p400. (B) mouse MED12. (C) *C. elegans* PQN-41B.

fig. S13. Electron micrographs of cells in patients, mouse, and cell culture models of polyQ disease demonstrating nuclear indentations. (A) Mouse model of Huntington's disease (HD) (*61*). Small arrows, nuclear indentations. (B) HD patient biopsy (*62*). Arrow, nuclear indentation. (C) Mouse model of SCA17 (*63*). Arrow, nuclear indentation. (D) DRPLA patient biopsy (*64*). Large arrows, nuclear indentation. (E) Cell culture model of SCA7 (*65*). Arrows, nuclear indentation. Images obtained by permission from the indicated references.

table S1. The unfolded protein response (UPR) is not required for linker cell death. Mutations in the indicated genes block the three known pathways leading to the UPR. All strains contain *qIs56*, an integrated GFP marker for the linker cell and *him-5(e1490)*. Linker cell survival was scored 2-4 hours after the L4-adult transition. In none of these strains was precocious linker cell death observed.

Genotype	% linker cell survival	n
<i>ire-1(v33</i>)	0	16
<i>xbp-1(zc12</i>)	0	64
pek-1(ok275)	4	104

table S2. p38 MAP kinase pathway kinases other than *sek-1* do not affect linker cell death. All strains contain *qIs56*, an integrated GFP marker for the linker cell and either *him-8(e1489)* or *him-5(e1490)*. The *mpk-1* allele was linked to the *unc-32(e189)* mutation. Linker cell survival was scored 2-4 hours after the L4-adult transition. n>86 for all strains.

Genotype	Process	% linker cell survival
tol-1(nr2033)	Innate immunity	1
p38 pathway kinases		
nsy-1(ky397)	Innate immunity, neuronal differentiation	1
nsy-1(ky542)	Innate immunity, neuronal differentiation	2
sek-1(km4)	Innate immunity, neuronal differentiation	<mark>20</mark>
sek-1(ag1)	Innate immunity, neuronal differentiation	<mark>49</mark>
pmk-1(km25)	Innate immunity	1
pmk-3(ok169)	Synaptic function, neuronal regeneration, stress response	6
Other MAPK pathway kinases		
mpk-1(ku1)	Ras signaling	0
mtk-1(ok1382)	Unknown	0
jkk-1(km2)	Synaptic function, stress response	2
mek-1(ks54)	Stress response	1
mkk-4(ju91)	Synaptic function	0
jnk-1(gk7)	Synaptic function, stress response	0
kgb-1(km21)	Stress response, neuronal regeneration	4
kgb-2(gk361)	Neuronal regeneration	2
dlk-1(tm4024)	Synaptic function, neuronal regeneration	2

References and Notes

- 1. M. C. Abraham, S. Shaham, Death without caspases, caspases without death. *Trends Cell Biol.* **14**, 184 (2004). <u>doi:10.1016/j.tcb.2004.03.002 Medline</u>
- 2. Y. Fuchs, H. Steller, Programmed cell death in animal development and disease. *Cell* **147**, 742 (2011). <u>doi:10.1016/j.cell.2011.10.033</u> <u>Medline</u>
- 3. J. F. Kerr, A. H. Wyllie, A. R. Currie, Apoptosis: A basic biological phenomenon with wideranging implications in tissue kinetics. *Br. J. Cancer* 26, 239 (1972). <u>doi:10.1038/bjc.1972.33</u> Medline
- 4. N. Honarpour *et al.*, Adult Apaf-1-deficient mice exhibit male infertility. *Dev. Biol.* **218**, 248 (2000). <u>doi:10.1006/dbio.1999.9585</u> <u>Medline</u>
- 5. E. Coucouvanis, G. R. Martin, Signals for death and survival: A two-step mechanism for cavitation in the vertebrate embryo. *Cell* 83, 279 (1995). <u>doi:10.1016/0092-</u><u>8674(95)90169-8 Medline</u>
- 6. W. Declercq, T. Vanden Berghe, P. Vandenabeele, RIP kinases at the crossroads of cell death and survival. *Cell* **138**, 229 (2009). <u>doi:10.1016/j.cell.2009.07.006 Medline</u>
- 7. K. Newton, X. Sun, V. M. Dixit, Kinase RIP3 is dispensable for normal NF-κBs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. *Mol. Cell. Biol.* 24, 1464 (2004). doi:10.1128/MCB.24.4.1464-1469.2004 Medline
- M. C. Abraham, Y. Lu, S. Shaham, A morphologically conserved nonapoptotic program promotes linker cell death in *Caenorhabditis elegans*. *Dev. Cell* 12, 73 (2007). <u>doi:10.1016/j.devcel.2006.11.012 Medline</u>
- 9. J. E. Sulston, D. G. Albertson, J. N. Thomson, The *Caenorhabditis elegans* male: postembryonic development of nongonadal structures. *Dev. Biol.* 78, 542 (1980). <u>doi:10.1016/0012-1606(80)90352-8</u> Medline
- 10. H. M. Ellis, H. R. Horvitz, Genetic control of programmed cell death in the nematode C. elegans. *Cell* 44, 817 (1986). <u>doi:10.1016/0092-8674(86)90004-8</u> <u>Medline</u>
- G. Pilar, L. Landmesser, Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. J. Cell Biol. 68, 339 (1976). doi:10.1083/jcb.68.2.339 Medline
- 12. R. W. Oppenheim *et al.*, Programmed cell death of developing mammalian neurons after genetic deletion of caspases. *J. Neurosci.* **21**, 4752 (2001). <u>Medline</u>
- T. Borsello, V. Mottier, V. Castagné, P. G. Clarke, Ultrastructure of retinal ganglion cell death after axotomy in chick embryos. *J. Comp. Neurol.* 453, 361 (2002). doi:10.1002/cne.10411 Medline
- 14. F. Simmer *et al.*, Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. *Curr. Biol.* **12**, 1317 (2002). <u>doi:10.1016/S0960-9822(02)01041-2</u> <u>Medline</u>
- 15. R. E. Ellis, H. R. Horvitz, Two C. elegans genes control the programmed deaths of specific cells in the pharynx. *Development* **112**, 591 (1991). <u>Medline</u>

- 16. H. Tabara *et al.*, The rde-1 gene, RNA interference, and transposon silencing in C. elegans. *Cell* **99**, 123 (1999). <u>doi:10.1016/S0092-8674(00)81644-X</u> <u>Medline</u>
- 17. K. K. Tamai, K. Nishiwaki, bHLH transcription factors regulate organ morphogenesis via activation of an ADAMTS protease in C. elegans. *Dev. Biol.* 308, 562 (2007). doi:10.1016/j.ydbio.2007.05.024 Medline
- F. Fiumara, L. Fioriti, E. R. Kandel, W. A. Hendrickson, Essential role of coiled coils for aggregation and activity of Q/N-rich prions and PolyQ proteins. *Cell* 143, 1121 (2010). <u>doi:10.1016/j.cell.2010.11.042</u> <u>Medline</u>
- 19. P. W. Faber, C. Voisine, D. C. King, E. A. Bates, A. C. Hart, Glutamine/proline-rich PQE-1 proteins protect Caenorhabditis elegans neurons from huntingtin polyglutamine neurotoxicity. *Proc. Natl. Acad. Sci. U.S.A.* **99**, 17131 (2002). <u>doi:10.1073/pnas.262544899</u> Medline
- 20. N. T. Liberati *et al.*, Requirement for a conserved Toll/interleukin-1 resistance domain protein in the *Caenorhabditis elegans* immune response. *Proc. Natl. Acad. Sci. U.S.A.* **101**, 6593 (2004). <u>doi:10.1073/pnas.0308625101</u> <u>Medline</u>
- C. F. Chuang, C. I. Bargmann, A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. *Genes Dev.* 19, 270 (2005). <u>doi:10.1101/gad.1276505 Medline</u>
- A. D. Johnson, D. Fitzsimmons, J. Hagman, H. M. Chamberlin, EGL-38 Pax regulates the ovo-related gene lin-48 during *Caenorhabditis elegans* organ development. *Development* 128, 2857 (2001). <u>Medline</u>
- 23. M. Fuchs *et al.*, The p400 complex is an essential E1A transformation target. *Cell* **106**, 297 (2001). <u>doi:10.1016/S0092-8674(01)00450-0</u> <u>Medline</u>
- 24. N. Mäkinen *et al.*, MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. *Science* **334**, 252 (2011). <u>doi:10.1126/science.1208930</u> Medline
- 25. S. Brenner, The genetics of Caenorhabditis elegans. Genetics 77, 71 (1974). Medline
- 26. T. Stiernagle, in *WormBook*, The *C. elegans* Research Community, Ed.; available at <u>http://wormbook.org</u> (2006), pp. 1–11.
- 27. K. R. Siegfried, J. Kimble, POP-1 controls axis formation during early gonadogenesis in C. elegans. *Development* **129**, 443 (2002). <u>Medline</u>
- 28. J. Hodgkin, H. R. Horvitz, S. Brenner, Nondisjunction mutants of the nematode *Caenorhabditis elegans. Genetics* **91**, 67 (1979). <u>Medline</u>
- 29. J. L. Tenor, A. Aballay, A conserved Toll-like receptor is required for *Caenorhabditis* elegans innate immunity. *EMBO Rep.* **9**, 103 (2008). <u>doi:10.1038/sj.embor.7401104</u> <u>Medline</u>
- 30. V. Ambros, H. R. Horvitz, Heterochronic mutants of the nematode *Caenorhabditis elegans*. *Science* **226**, 409 (1984). <u>doi:10.1126/science.6494891</u> <u>Medline</u>

- 31. A. Sagasti *et al.*, The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. *Cell* **105**, 221 (2001). doi:10.1016/S0092-8674(01)00313-0 Medline
- 32. R. P. Shivers, T. Kooistra, S. W. Chu, D. J. Pagano, D. H. Kim, Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in *C. elegans. Cell Host Microbe* 6, 321 (2009). doi:10.1016/j.chom.2009.09.001 Medline
- 33. Y. Wu, M. Han, Suppression of activated Let-60 ras protein defines a role of *Caenorhabditis elegans* Sur-1 MAP kinase in vulval differentiation. *Genes Dev.* 8, 147 (1994). doi:10.1101/gad.8.2.147 Medline
- 34. T. Mizuno *et al.*, The *Caenorhabditis elegans* MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. *EMBO J.* 23, 2226 (2004). <u>doi:10.1038/sj.emboj.7600226</u> Medline
- 35. K. Berman, J. McKay, L. Avery, M. Cobb, Isolation and characterization of pmk-(1-3): three p38 homologs in *Caenorhabditis elegans*. *Mol. Cell Biol. Res. Commun.* 4, 337 (2001). doi:10.1006/mcbr.2001.0300 Medline
- 36. K. Nakata *et al.*, Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. *Cell* **120**, 407 (2005). <u>doi:10.1016/j.cell.2004.12.017</u> <u>Medline</u>
- 37. A. Villanueva *et al.*, jkk-1 and mek-1 regulate body movement coordination and response to heavy metals through jnk-1 in *Caenorhabditis elegans*. *EMBO J.* 20, 5114 (2001). doi:10.1093/emboj/20.18.5114 Medline
- 38. D. H. Kim *et al.*, A conserved p38 MAP kinase pathway in *Caenorhabditis elegans* innate immunity. *Science* **297**, 623 (2002). <u>doi:10.1126/science.1073759</u> <u>Medline</u>
- 39. M. Tanaka-Hino *et al.*, SEK-1 MAPKK mediates Ca²⁺ signaling to determine neuronal asymmetric development in *Caenorhabditis elegans*. *EMBO Rep.* **3**, 56 (2002). doi:10.1093/embo-reports/kvf001 Medline
- 40. M. Kawasaki *et al.*, A Caenorhabditis elegans JNK signal transduction pathway regulates coordinated movement via type-D GABAergic motor neurons. *EMBO J.* 18, 3604 (1999). <u>doi:10.1093/emboj/18.13.3604</u> <u>Medline</u>
- 41. M. Koga, R. Zwaal, K. L. Guan, L. Avery, Y. Ohshima, A *Caenorhabditis elegans* MAP kinase kinase, MEK-1, is involved in stress responses. *EMBO J.* **19**, 5148 (2000). doi:10.1093/emboj/19.19.5148 Medline
- 42. J. Ahringer, *WormBook* in *WormBook*, The *C. elegans* Research Community, Ed.; available at <u>http://wormbook.org</u> (2006).
- 43. R. S. Kamath, J. Ahringer, Genome-wide RNAi screening in *Caenorhabditis elegans*. *Methods* **30**, 313 (2003). <u>doi:10.1016/S1046-2023(03)00050-1</u> <u>Medline</u>
- 44. R. S. Kamath, M. Martinez-Campos, P. Zipperlen, A. G. Fraser, J. Ahringer, *Genome Biol.* 2, RESEARCH0002 (2001).

- 45. A. G. Fraser *et al.*, Functional genomic analysis of *C. elegans* chromosome I by systematic RNA interference. *Nature* **408**, 325 (2000). <u>doi:10.1038/35042517</u> <u>Medline</u>
- 46. R. S. Kamath *et al.*, Systematic functional analysis of the *Caenorhabditis elegans* genome using RNAi. *Nature* **421**, 231 (2003). <u>doi:10.1038/nature01278</u> <u>Medline</u>
- 47. J. F. Rual *et al.*, Toward improving *Caenorhabditis elegans* phenome mapping with an ORFeome-based RNAi library. *Genome Res.* 14, (10B), 2162 (2004). doi:10.1101/gr.2505604 Medline
- 48. H. A. Hess, J. C. Röper, S. W. Grill, M. R. Koelle, RGS-7 completes a receptor-independent heterotrimeric G protein cycle to asymmetrically regulate mitotic spindle positioning in *C. elegans. Cell* **119**, 209 (2004). <u>doi:10.1016/j.cell.2004.09.025</u> <u>Medline</u>
- 49. G. Jansen, E. Hazendonk, K. L. Thijssen, R. H. Plasterk, Reverse genetics by chemical mutagenesis in *Caenorhabditis elegans*. *Nat. Genet.* 17, 119 (1997). <u>doi:10.1038/ng0997-119 Medline</u>
- 50. C. C. Mello, J. M. Kramer, D. Stinchcomb, V. Ambros, Efficient gene transfer in *C. elegans*: extrachromosomal maintenance and integration of transforming sequences. *EMBO J.* 10, 3959 (1991). <u>Medline</u>
- M. Kato, P. W. Sternberg, The *C. elegans* tailless/Tlx homolog nhr-67 regulates a stagespecific program of linker cell migration in male gonadogenesis. *Development* 136, 3907 (2009). doi:10.1242/dev.035477 Medline
- 52. M. Maduro, D. Pilgrim, Identification and cloning of unc-119, a gene expressed in the *Caenorhabditis elegans* nervous system. *Genetics* **141**, 977 (1995). <u>Medline</u>
- 53. K. Roayaie, J. G. Crump, A. Sagasti, C. I. Bargmann, The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in *C. elegans* olfactory neurons. *Neuron* **20**, 55 (1998). <u>doi:10.1016/S0896-6273(00)80434-1</u> Medline
- 54. M. A. Allen, L. W. Hillier, R. H. Waterston, T. Blumenthal, A global analysis of *C. elegans* trans-splicing. *Genome Res.* **21**, 255 (2011). <u>doi:10.1101/gr.113811.110</u> <u>Medline</u>
- 55. M. B. Gerstein *et al.*; modENCODE Consortium, Integrative analysis of the *Caenorhabditis elegans* genome by the modENCODE project. *Science* **330**, 1775 (2010). doi:10.1126/science.1196914 Medline
- 56. M. Kirouac, P. W. Sternberg, cis-Regulatory control of three cell fate-specific genes in vulval organogenesis of *Caenorhabditis elegans* and *C. briggsae. Dev. Biol.* 257, 85 (2003). doi:10.1016/S0012-1606(03)00032-0 Medline
- 57. H. T. Schwartz, A protocol describing pharynx counts and a review of other assays of apoptotic cell death in the nematode worm *Caenorhabditis elegans*. *Nat. Protoc.* 2, 705 (2007). doi:10.1038/nprot.2007.93 Medline
- 58. E. A. Lundquist, P. W. Reddien, E. Hartwieg, H. R. Horvitz, C. I. Bargmann, Three *C. elegans* Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. *Development* **128**, 4475 (2001). <u>Medline</u>
- 59. J. Hodgkin, Exploring the envelope. Systematic alteration in the sex-determination system of the nematode *Caenorhabditis elegans*. *Genetics* **162**, 767 (2002). <u>Medline</u>

- 60. A. Lupas, M. Van Dyke, J. Stock, Predicting coiled coils from protein sequences. *Science* **252**, 1162 (1991). <u>doi:10.1126/science.252.5009.1162</u>
- 61. S. W. Davies *et al.*, Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. *Cell* **90**, 537 (1997). doi:10.1016/S0092-8674(00)80513-9 Medline
- 62. G. T. Bots, G. W. Bruyn, Neuropathological changes of the nucleus accumbens in Huntington's chorea. *Acta Neuropathol.* **55**, 21 (1981). <u>doi:10.1007/BF00691525</u> <u>Medline</u>
- M. J. Friedman *et al.*, Polyglutamine domain modulates the TBP-TFIIB interaction: Implications for its normal function and neurodegeneration. *Nat. Neurosci.* 10, 1519 (2007). <u>doi:10.1038/nn2011</u> <u>Medline</u>
- 64. H. Takahashi *et al.*, Neuronal nuclear alterations in dentatorubral-pallidoluysian atrophy: Ultrastructural and morphometric studies of the cerebellar granule cells. *Brain Res.* **919**, 12 (2001). <u>doi:10.1016/S0006-8993(01)02986-9</u> <u>Medline</u>
- 65. C. Zander *et al.*, Similarities between spinocerebellar ataxia type 7 (SCA7) cell models and human brain: Proteins recruited in inclusions and activation of caspase-3. *Hum. Mol. Genet.* **10**, 2569 (2001). <u>doi:10.1093/hmg/10.22.2569 Medline</u>