The Rockefeller University
Shaham Lab
HOME     RESEARCH     LAB MEMBERS     PUBLICATIONS     CONTACT US     LINKS
Publications
  • Stefanakis, N., Jiang, J., Liang, Y., and Shaham, S. (2024). LET-381/FoxF and its target UNC-30/Pitx2 specify and maintain the molecular identity of C. elegans mesodermal glia that regulate motor behavior. EMBO J. doi: 10.1038/s44318-024-00049-w.
     
  • Rieger, I., Weintraub, G., Lev, I., Goldstein, K., Bar-Zvi, D., Anava, S., Gingold, H., Shaham, S., and Rechavi, O. (2023). Nucleus-Independent Transgenerational small RNA Inheritance in Caenorhabditis elegans. (Supplemental Data). Sci. Adv. 9: eadj8618.
     
  • Shaham, S. (2023). Q & A: Shai Shaham. Curr. Biol., 33: R702-R704.
     
  • Rashid, A., Tevlin, M., Lu, Y., and Shaham, S. (2022). A developmental pathway for epithelial-to-motoneuron transformation in C. elegans. (Supplemental Data). Cell Rep., 40: 111414.
     
  • Toker, I. A., Lev, I., Mor, Y. Gurevich, Y., Fisher, D., Houri-Zeevi, L., Antonova, O., Doron, H., Anava, S., Gingold, H., Hadany, L., Shaham, S., and Rechavi, O. (2022). Parental Experience Regulates Sexual Attraction for Multiple Generations. Dev. Cell, 57: 298-309.
     
  • Wallace, S. W., Lizzappi, M. C., Magemizoglu, E., Hur, H., Liang, Y., and Shaham, S.(2021). Nuclear hormone receptors promote gut and glia detoxifying-enzyme induction and protect C. elegans from the mold P. brevicompactum. Cell Reports, 37: 110166.
     
  • Mizeracka, K., Rogers, J. M., Shaham, S., Bulyk, M. L., and Heiman, M. G. (2021). Lineage-specific control of convergent differentiation by a Forkhead repressor. Development, 148: dev199493.
     
  • Jiang, H.-S., Ghose, P., Han, H.-F., Tsai, Y.-Y., Lin, H.-C., Tseng, W.-C., Wu, J.-C., Shaham, S., and Wu, Y.-C. (2021). BLMP-1 promotes developmental cell death in C. elegans by timely repression of ced-9/bcl-2 transcription. Development, 148: dev193995.
     
  • Deng, X., Tchieu, J., Higginson, D., Feldman, R., Studer, L., Shaham, S., Powell, S. N., Fuks, Z., and Kolesnick, R. (2021). Disabling Fanconi Anemia Signaling in Stem Cells Leads to Radioresistance and Genomic Instability. (Supplemental Data). Cancer Res. 81: 3706-3716.
     
  • Raiders, S., Black, E. C., Bae, A., MacFarlane, S., Klein, M., Shaham, S., and Singhvi, A. (2021). Glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior. eLife 10:e63532 DOI: 10.7554/eLife.63532.
     
  • Nagai, J., Yu, X., Papouin, T., Cheong, E., Freeman, M. R., Monk, K. R., Hastings, M. H., Haydon, P. G., Rowitch, D., Shaham, S., and Khakh, B. S. (2021). Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109: 576-596
     
  • Lee, I. H., Procko, C., Katz, M., and Shaham, S. (2020). Stress-Induced Neural Plasticity Mediated by Glial GPCR REMO-1 Promotes C. elegans Adaptive Behavior. Cell Reports, 34: 108607.
     
  • Ghose, P. and Shaham, S. (2020). Cell death in animal development. Development 147: dev191882 doi: 10.1242/dev.191882.
     
  • Huang, T.-T., Matsuyama, H. J., Tsukada, Y., Singhvi, A., Syu, R.-T., Lu, Y., Shaham, S., Mori, I., Pan, C.-L. (2020). Age-Dependent Changes in Receptive Ending Shape and Activity of a C. elegans Thermosensory Neuron and Thermotaxis Behavior in Caenrohabditis elegans. Aging Cell, doi: https://doi.org/10.1111/acel.13146.
     
  • Yarychkivska, O. and Shaham, S. (2020). Development or Disease: Caspases balance growth and Immunity in C. elegans. Dev. Cell 53: 259-260.
     
  • Singhvi, A. and Shaham, S. (2019). Glia-Neuron Interactions in Caenorhabditis elegans. Ann. Rev. Neurosci. 42: 149-168.
     
  • Katz, M. and Shaham, S. (2019). Learning and Memory: Mind over Matter in C. elegans. Curr. Biol. 29: R365-R367.
     
  • Katz, M., Corson, F., Keil, W., Singhal, A., Bae, A., Lu, Y., Liang, Y., and Shaham, S. (2019). Glutamate spillover in C. elegans triggers repetitive behavior through presynaptic activation of MGL-2/mGluR5. (Supplemental Data). Nat. Comm. doi: 10.1038/s41467-019-09581-4.
     
  • Kutscher, L. M., Keil, W., and Shaham, S. (2018). RAB-35 and ARF-6 GTPases Mediate Engulfment and Clearance Following Linker Cell-Type Death. (Supplemental Data). Dev. Cell 47: 222-238.
     
  • Insley, P. and Shaham, S. (2018). Automated C. elegans embryo alignments reveal brain neuropil position invariance despite lax cell body placement. (Supplemental Data). PLoS One 13: e0194861.
     
  • Ghose, P., Rashid, A., Insley, P., Trivedi, M., Shah, P., Singhal, A., Lu, Y., Bao, Z., and Shaham, S. (2018). EFF-1 fusogen promotes phagosome sealing during cell process clearance in Caenorhabditis elegans. (Supplemental Data). Nat. Cell Biol. 20: 393-399.
     
  • Katz, M., Corson, F., Iwanir, S., Biron, D., and Shaham, S. (2018). Glia modulate a neuronal circuit for Locomotion Suppression during Sleep in C. elegans (Supplemental Data). Cell Rep. 22: 2575-2583.
     
  • Wang, W., Perens, E. A., Oikonomou, G., Wallace, S. W., Lu, Y., and Shaham, S. (2017). IGDB-2, an Ig/FNIII protein, binds the ion channel LGC-34 and controls sensory compartment morphogenesis in C. elegans (Supplemental Data). Dev. Biol. 430: 105-112.
     
  • Rapti, G., Shan, A., Lu, Y., and Shaham, S. (2017). Glia initiate brain assembly through noncanonical Chimaerin-Furin axon guidance in C. elegans (Supplemental Data). Nat. Neurosci. 20: 1350-1360.
     
  • Wallace, W. S. and Shaham, S. (2017). Sensory cilia: generating diverse shapes one Ig domain at a time. Curr. Biol. 27: R654-R656.
     
  • Kutscher, L. M. and Shaham, S. (2017). Non-apoptotic cell death in animal development. Cell Death Differ. 24: 1326-1336.
     
  • Singhal, A. and Shaham, S. (2017). Infrared laser-induced gene expression for tracking development and function of single C. elegans embryonic neurons (Supplemental Data). Nat. Comm. doi: 10.1038/ncomms14100.
     
  • Keil, W., Kutscher, L. M., Shaham, S. and Siggia, E.D. (2017). Long-Term High-Resolution Imaging of Developing C. elegans Larvae with Microfluidics (Supplemental Data). Dev. Cell 40: 202-214.
     
  • Malin, J. A., Kinet, M. J., Abraham, M. C., Blum, E. S., and Shaham, S. (2016). Transcriptional control of non-apoptotic developmental cell death in C. elegans (Supplemental Data). Cell Death Diff. 23: 1985-1994.
     
  • Schwendeman, A. R. and Shaham, S. (2016). A High-Throughput Small Molecule Screen for C. elegans Linker Cell Death Inhibitors (Supplemental Data). PLoSOne 11: e0164595.
     
  • Rangan, K. J., Pedicord, V. A., Wang, Y.-C., Kim, B., Lu, Y., Shaham, S., Mucida, D., and Hang, H. C. (2016). A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens (Supplemental Data). Science 353: 1434-1437.
     
  • Lin, Y., Schulz, A., Pellegrino, M. W., Lu, Y., Shaham, S., and Haynes, C. M. (2016). Maintenance and propagation of a deleterious mitochondrial genome by the mitochondrial UPR. Nature 533: 416-419.
     
  • Singhvi, A., Liu, B., Friedman, C.J., Fong, J., Huang, X-Y, and Shaham, S. (2016). A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC. Cell 165: 936-948.
     
  • Wallace, S.W., Singhvi, A., Liang, Y., Lu, Y., and Shaham, S. (2016). PROS-1/Prospero Is a Major Regulator of the Glia-Specific Secretome Controlling Sensory-Neuron Shape and Function in C. elegans (Supplemental Data). Cell Rep. 15: 550-562.
     
  • Kinet, M.J., Malin, J.A., Abraham, M.C., Blum, E.S., Silverman, M.R., Lu, Y., and Shaham, S. (2015). HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans (Supplemental Data). eLife, doi: 10.7554/eLife.12821.001.
     
  • Malin, J.Z. and Shaham, S. (2015). Cell Death in C. elegans Development. Curr. Top. Dev. Biol. 114: 1-42.
     
  • Kelley, M., Yochem, J., Krieg, M., Goodman, M., Chalfie, M., Calixto, A., Frand, A., Meli, V., Shaham, S., Heiman, M., and Fay, D.S. (2015). FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis (Supplemental Data). eLife, doi: 10.7554/eLife.06565.
     
  • Shaham, S. (2015). Glial development and function in the nervous system of C. elegans. Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a020578.
     
  • Kinet, M.J. and Shaham, S. (2014). Noncanonical cell death in the nematode Caenorhabditis elegans. Methods Enzymol. 545: 157-180.
     
  • Kutscher, L.M. and Shaham, S. (2014). Forward and reverse mutagenesis in C. elegans. WormBook doi: 10.1895/wormbook.1.167.1.
     
  • Pfaff, S. and Shaham, S. (2013). Development of neurons and glia. Editorial overview. Curr. Op. Neurobiol. 23: 901-902.
     
  • Peliti, M., Chuang, J., and Shaham, S. (2013). Directional locomotion of C. elegans in the absence of external stimuli (Supplemental Data). PLoSOne 8: e78535.
     
  • Blum, E.S., Schwendeman, A.R., and Shaham, S. (2013). polyQ disease: misfiring of a developmental cell death program? Trends Cell Biol. 23: 168-174.
     
  • Chiorazzi, M., Rui, L., Yang, Y., Ceribelli, M., Maurer, C. W., Zhao, H., Xu, W., Ranuncolo, S. M., Chan, W. C., Jaffe, E. S., Gascoyne, R. D., Campo, E., Rosenwald, A., Ott, G., Delabie, J., Rimsza, L., Shaham, S., and Staudt, L. M. (2013). Related F-box proteins control cell death in C. elegans and human lymphoma. Proc. Natl. Acad. Sci. USA 110: 3943-3948.
     
  • Han, L., Wang, Y., Sangaletti, R., D'Urso, Giulia, Lu, Y., Shaham, S., and Bianchi, L. (2013). Two Novel DEG/ENaC Channel Subunits Expressed in Glia Are Needed for Nose-Touch Sensitivity in Caenorhabditis elegans. J. Neurosci. 33: 936-949.
     
  • Oikonomou, G., and Shaham, S. (2012). On the morphogenesis of glial compartments in the sensory organs of Caenorhabditis elegans. Worm 1: 50-54.
     
  • Procko, C., Lu, Y., and Shaham, S. (2012). Sensory Organ Remodeling in Caenorhabditis elegans Requires the Zinc-finger Protein ZTF-16 (Supplemental Data). Genetics 190: 1405-1415.
     
  • Blum, E.S., Abraham, M.C., Yoshimura, S., Lu, Y., and Shaham, S. (2012). Control of non-apoptotic developmental cell death in C. elegans by a polyglutamine-repeat protein (Supplemental Data). Science 335: 970-973.
     
  • Oikonomou, G., Perens, E. A., Lu, Y., and Shaham, S. (2012). Some, but not all, retromer components promote morphogenesis of C. elegans sensory compartments (Supplemental Data). Dev. Biol. 362: 42-49.
     
  • Procko, C. and Shaham, S. (2011). Quick Guide: Stress. Curr. Biol., 21: R908-R910.
     
  • Oikonomou, G., Perens, E. A., Lu, Y., Watanabe, S., Jorgensen, E. M., and Shaham, S. (2011). Opposing Activities of LIT-1/NLK and DAF-6/Patched-Related Direct Sensory Compartment Morphogenesis in C. elegans (Supplemental Data). PLoS Biol. 9: e1001121.
     
  • Spencer, C. W., Zeller, G., Watson, J. D., Henz, S. R., Watkins, K. L., McWhirter, R. D., Petersen, S., Sreedharan, V., Widmer, C., Jo, J., Reinke, V., Petrella, L., Strome, S., Von Stetina, S., Katz, M., Shaham, S., Rätsch, G., and Miller, D. M (2011). A Spatial and Temporal Map of C. elegans Gene Expression (Supplemental Data). Genome Res. 21: 325-341.
     
  • Hao, L., Thein, M., Brust-Mascher, I., Civelekoglu-Scholey, G., Lu, Y., Acar, S., Prevo, B., Shaham, S., and Scholey, J. M. (2011). Delivery of tubulin isotypes to sensory cilium middle and distal segments by intraflagellar transport. Nat. Cell Biol., 13: 790-798.
     
  • Oikonomou, G. and Shaham, S. (2011). The glia of Caenorhabditis elegans. Glia 59: 1253-1263.
     
  • Procko, C., Lu, Y., and Shaham, S. (2011). Glia delimit shape changes of sensory neuron receptive endings in C. elegans (Supplemental Data). Development 22: 1371-1381.
     
  • Procko, C. and Shaham, S. (2010). Assisted morphogenesis: glial control of dendrite shapes. Curr. Opin. Cell Biol. 22: 560-565.
     
  • Clark, A. M., Goldstein, L. D., Tevlin, M., Tavare, S., Shaham, S., and Miska, E. A. (2010). The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans (Supplemental Data). Nucleic Acids Res. 38: 3780-3793.
     
  • Shaham, S. (2010). Chemosensory organs as models of neuronal synapses. Nat. Rev. Neurosci. 11: 212-217.
     
  • Heiman, M. G. and Shaham, S. (2010). Twigs into branches: how a filopodium becomes a dendrite. Curr. Opin. Neurobiol. 20: 86-91.
     
  • Procko, C. and Shaham, S. (2009). Synaptogenesis: New Roles for and Old Player. Curr. Biol. 19: R1114-R1115.
     
  • Shaham, S. (2009). galign: A Tool for Rapid Genome Polymorphism Discovery. PLoS One 4: e7188.
     
  • Heiman, M. G. and Shaham, S. (2009). DEX-1 and DYF-7 Establish Sensory Dendrite Length by Anchoring Dendritic Tips during Cell Migration (Supplemental Data; Movies and Plasmid Sequences). Cell 137: 344-355.
     
  • Bacaj, T., Tevlin, M., Lu., Y., and Shaham, S. (2008). Glia are Essential for Sensory Organ Function in C. elegans (Supplemental Data). Science 322: 744-747.
     
  • Deng, X., Yin, X., Allan, R., Lu, D. D., Maurer, C. W., Haimovitz-Friedman, A., Shaham, S., and Kolesnik, R. (2008). Ceramide Biogenesis is Required for Radiation-induced Apoptosis in the Germ Line of Caenorhabditis elegans (Supplemental Data). Science 322: 110-115.
     
  • Wang, Y., Apicella, A., Lee, S., Ezcurra, M., Slone, D., Goldmit, M., Schafer, W. R., Shaham, S., Driscoll, M., and Bianchi, L. (2008). A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans (Supplemental Data). EMBO J. 27: 2388-2399.
     
  • Blum, E. S., Driscoll, M., and Shaham, S. (2008). Non-Canonical Cell Death Programs in the nematode Caenorhabditis elegans. Cell Death and Diff. 15: 1124-1131.
     
  • Yoshimura, S. Murray, J. I., Lu, Y., Waterston, R. H., and Shaham, S. (2008). mls-2 and vab-3 control glia development, hlh-17/Olig expression, and glia-dependent neurite extension in C. elegans (Supplemental Methods and Figures). Development 135: 2263-2275.
     
  • Mukhopadhyay, S., Lu, Y., Shaham, S., and Sengupta, P. (2008). Sensory signaling-dependent remodeling of olfactory cilia architecture in C. elegans. Dev. Cell 14: 762-774.
     
  • http://www.wormbook.org/chapters/www_intromethodscellbiology/intromethodscellbiology.html
  • Bacaj, T., Lu, Y., and Shaham, S. (2008). The Conserved Proteins CHE-12 and DYF-11 Are Required for Sensory Cilium Function in Caenorhabditis elegans. Genetics 178: 989-1002.
     
  • Shaham, S. (2007). Counting mutagenized genomes and optimizing genetic screens in Caenorhabditis elegans. PLoS One 2: e1117.
     
  • Abraham, M., and Shaham, S. (2007). Necrosis and the serpin under't. Dev. Cell 13: 464-465.
     
  • Heiman, M. and Shaham, S. (2007). Ancestral roles of glia suggested by the nervous system of Caenorhabditis elegans. Neuron Glia Biol. 3: 55-61.
     
  • Mukhopadhyay, S., Lu, Y., Qin, H., Lanjuin, A., Rosenbaum, J. L., Shaham, S., and Sengupta, P. (2007). Distinct IFT mechanisms contribute to the generation of ciliary structural diversity in C. elegans. EMBO J. 26: 2966-2980.
     
  • Bacaj, T.,and Shaham, S. (2007). Temporal control of cell-specific transgene expression in C. elegans. Genetics 176: 2651-2655.
     
  • Maurer, C., Chiorazzi, M., and Shaham, S. (2007). Timing of developmental cell death onset controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene (Supplemental Data). Development 134: 1357-1368.
     
  • Abraham, M. C., Lu, Y., and Shaham, S. (2007). A morphologically conserved non-apoptotic program promotes linked cell death in C. elegans (Supplemental Data). Dev. Cell, 12: 73-86.
     
  • Shaham, S. (2006). Glia-neuron interactions in the nervous system of C. elegans. Curr. Opin. Neurobiol. 16:522-528.
     
  • Shaham, S. (2006). Worming into the cell: viral reproduction in C. elegans. Proc. Natl. Acad. Sci. 103:3955-3956.
     
  • Shaham, S. (2006). The dynami(n)cs of cell corpse engulfment. Dev. Cell 10:690-691.
     
  • Shaham, S., ed., WormBook: Methods in Cell Biology (January 02, 2006), WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.49.1, https://www.wormbook.org.
     
  • Shaham, S. (2005). Glia-Neuron Interactions in Nervous System Function and Development. Curr. Top. Dev. Biol. 69:39-66.
     
  • Perens, E. and Shaham, S. (2005). C. elegans daf-6 encodes a Patched-related protein required for lumen formation (Supplemental Data). Dev. Cell 8: 893-906.
     
  • Blacque, O. E., Perens, E., Boroevich, K. A., Inglis, P. N., Li, C., Warner, A., Khattra, J., Holt, R. A., Mah, A. K., McKay, S. J., Huang, P., Swoboda, P., Jones, S. J. M., Marra, M. A., Baillie, D. L., Moerman, D. G., Shaham, S., and Leroux, M. R. (2005). Functional genomics of the cilium, a sensory organ. Curr. Biol. 15: 935-941.
     
  • Schumacher, B., Schertel, C., Wittenburg, N., Tuck, S., Mitani, S., Gartner, A., Conradt, B., and Shaham, S. (2005). C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage (Supplemental Data). Cell Death and Diff. 12: 153-161.
     
  • Abraham, M. C. and Shaham, S. (2004). Death without caspases, caspases without death. Trends Cell Biol. 14: 184-193.
     
  • Shaham, S. (2003). Apoptosis: A Process with a NAC for Complexity. Cell 114: 659-661.
     
  • Shaham, S. and Bargmann, C. I. (2002). Control of neuronal subtype identity by the C. elegans ARID protein CFI-1. Genes & Development 16: 972-983.
     
  • Shaham, S., Reddien, P. W., Davies, B., and Horvitz, H. R. (1999). Mutational analysis of the C. elegans cell death gene ced-3. Genetics, 153: 1655-1671.
     
  • Blondel, M., Alepuz, P. M., Huang, L. S., Shaham, S., Ammerer, G., and Peter, M. (1999). Nuclear export of Far1p in response to pheromones requires the export receptor Msn5p/Ste21p. Genes & Development 13: 2286-2300.
     
  • Shaham, S. (1998). Identification of multiple Caenorhabditis elegans caspases and their potential roles in proteolytic cascades. J. Biol. Chem. 273: 35109-35117.
     
  • Shaham, S., Shuman, M. A., and Herskowitz, I. (1998). Death-Defying Yeast Identify Novel Apoptosis Genes. Cell 92: 425-427.
     
  • Shaham, S., and Horvitz, H. R. (1996). An alternatively spliced C. elegans ced-4 RNA encodes a novel cell-death inhibitor. Cell 86: 201-208.
     
  • Xue, D., Shaham, S., and Horvitz, H. R. (1996). The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes & Development 10: 1073-1083.
     
  • Shaham, S., and Horvitz, H. R. (1996). Developing C. elegans neurons may contain both cell-death protective and killer activities. Genes & Development 10: 578-591.
     
  • Horvitz, H. R., Shaham, S., and Hengartner, M. O. (1994). The genetics of programmed cell death in the nematode Caenorhabditis elegans. Cold Spring Harbor Symp. Quant. Biol. 59: 377-385.
     
  • Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1ß converting enzyme. Cell 75: 641-652.